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ABSTRACT

We present a systematic study of the density profiles of dark matter halos in ΛCDM cosmolo-

gies, focusing on the question whether these profiles are “universal”, i.e., whether they follow

the same functional form regardless of halo mass, redshift, cosmology, and other parameters.

The inner profiles (r <∼ Rvir) can be described as a function of only mass and concentration,

and we thus begin by investigating whether there is a universal, cosmology-independent

relation between those two parameters. We propose a model in which concentration is a

function only of a halo’s peak height and the local slope of the matter power spectrum. This

model matches the concentrations in ΛCDM and scale-free simulations, correctly extrapo-

lates over 16 orders of magnitude in halo mass, and differs significantly from all previously

proposed models at high masses and redshifts. We find that the outer profiles (r >∼ Rvir) are

remarkably universal across redshifts when radii are rescaled by R200m, whereas the inner

profiles are most universal in units of R200c, highlighting that universality depends upon

the definition of the halo boundary. Furthermore, we discover that the outer profiles exhibit

significant deviations from the supposedly universal analytic formulae previously suggested

in the literature, such as the NFW and Einasto forms. In particular, the logarithmic slope

of the profiles of massive or rapidly accreting halos steepens more sharply than predicted

around r ≈ R200m, where the steepness increases with increasing peak height or mass ac-

cretion rate. We propose a new, accurate fitting formula that takes these dependencies into

account. Finally, we demonstrate that the profile steepening corresponds to the caustic at

the apocenter of infalling matter on its first orbit. We call the location of the caustic the

splashback radius, Rsp, and propose this radius as a new, physically motivated definition of

the halo boundary. We discuss potential observational signatures of Rsp that would allow

us to estimate the mass accretion rate of halos.
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CHAPTER 1

INTRODUCTION

In this chapter, we introduce the main underlying question this thesis seeks to address: does

universality arise in the structural properties of collapsed halos? We summarize the most

important historical developments, outline ways in which we address the issue, and define

the quantities that form the basis of our analysis.

1.1 Hierarchical Structure Formation: Order from Chaos?

In the overwhelmingly favored ΛCDM paradigm of structure formation, inflation seeds fluc-

tuations in the initial density field which grow under the influence of gravity (e.g., Peebles

1982). When some critical overdensity is reached, matter begins to non-linearly collapse into

dense halos (Gunn & Gott 1972; Press & Schechter 1974; Bond et al. 1991). Subsequently,

small halos merge into larger halos, rendering the process “hierarchical”. The baryons fall

into the potential wells created by the gravitationally dominant dark matter, condense and

cool at the centers of halos, and form galaxies (e.g., White & Rees 1978).

In this picture, theoretical predictions for the structure of dark matter halos are an es-

sential input for models of galaxy formation and play an important role in the interpretation

of observations, from the kinematics of stars and gas in galaxies to the lensing signal in the

outskirts of galaxies and clusters (e.g., Courteau et al. 2014). Hence, significant effort has

been expended over the past decades to understand the most basic description of the struc-

ture of halos: their spherically averaged, radial density profiles, hereafter simply “density

profiles”. Some of the central questions are as follows:

• Given the messy, non-linear nature of gravitational collapse, can we expect the density

profiles to assume some universal functional form ρ(r), i.e., a form that applies to all

halos regardless of halo mass, redshift, and cosmology? Ideally, such a function would
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need to be scaled by only one parameter that captures the mass M or size R of a halo,

ρ(r) = ρ(r, R) or ρ(r,M). M and R can be used interchangeably because we define M

to be the mass within R.

• How should the radius R be defined?

• If no universal form exists and ρ(r) = ρ(r,M,P), what variables P influence the

profiles? Are there variables that have not been considered yet, e.g., variables other

than halo mass, redshift, and cosmology?

Let us first consider these questions in the context of simplified, analytical models, before

turning to the results of more realistic simulations.

1.1.1 Theoretical considerations

We begin by considering conditions under which we would expect halo density profiles to

follow a perfectly universal shape. Let us imagine an isolated, positive density perturbation

that falls off as a power-law of distance, such that the average density enclosed within radius

r is δi(r) ∝ r−γ , embedded in a universe with Ωm = 1. The only physical scale in this

problem is the amplitude of the perturbation. After the collapse of the initial perturbation,

matter is added through “secondary infall”, the spherically symmetric, radial addition of

shells of dark matter. According to this “spherical collapse model”, the resulting density

profile follows a power-law shape, ρ(r, R) ∝ (r/R)−g, where the halo size R reflects the

amplitude of the initial perturbation and g = 2 for γ < 2 and g = 3γ/(1 + γ) for γ ≥ 2

(Gunn & Gott 1972; Gott 1975; Fillmore & Goldreich 1984; Bertschinger 1985). Thus, if all

initial perturbations had the same slope γ, all halo density profiles would follow a universal

power-law shape.

While this result is encouragingly simple, it is also based on unrealistic assumptions:

halos are not isolated but merge with each other, they arise not from spherically symmetric
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point perturbations but from peaks in a Gaussian random field, and Ωm is not one, meaning

that halo collapse slows down at low redshifts. As a result, realistic halo collapse is triaxial

and more complicated than envisioned in the spherical collapse model (e.g., Doroshkevich

1970; Bond & Myers 1996; Bond et al. 1996), a picture confirmed by cosmological simulations

(see Chapter 1.1.2 below).

Nevertheless, we can still hope to find a universal halo structure even in ΛCDM cos-

mologies. Dalal et al. (2010) showed that the density profiles of halos can be understood as

an adiabatically contracted version of their progenitor peaks in the initial Gaussian random

field, which exhibit a more or less universal shape (Bardeen et al. 1986; Dalal et al. 2010).

However, in order to make use of the universality that might arise from the peak-halo connec-

tion, we need to translate some conventional halo properties (such as mass) into properties

of peaks in a Gaussian random field (such as peak height, ν, the statistical significance of

a density fluctuation). We will return to this line of argumentation in Chapter 1.1.3, but

first we briefly review some important results regarding the shape of the density profiles in

realistic CDM cosmologies.

1.1.2 Density Profiles in (Λ)CDM Simulations

Measuring halo density profiles was among the first applications of cosmological simulations

of structure formation in the 1980s. Early simulations of halos suggested that their profiles

were roughly consistent with isothermal profiles, ρ ∝ r−2, required to explain the flat rotation

curves of galaxies (Frenk et al. 1985, 1988). Simulations with higher resolution, however,

showed that, in general, the profiles of halos forming in a hierarchical structure scenario

are not well described by a single power law. Thus, Dubinski & Carlberg (1991) modeled

the collapse of individual halos and showed that the Hernquist (1990) profile, in which the

slope changes from −1 at small radii to −4 at large radii, provides a good description of the

collapsed halos in their simulations. Navarro et al. (1995, 1996, 1997, hereafter NFW, see
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also Cole & Lacey 1996) proposed a similar form of the density profile but with an asymptotic

outer slope of −3,

ρNFW =
ρs

(r/rs)(1 + r/rs)2
. (1.1)

However, numerous works have demonstrated that the profiles are more accurately described

by the Einasto (1965, 1969) functional form (Navarro et al. 2004; Graham et al. 2006; Merritt

et al. 2006; Gao et al. 2008; Stadel et al. 2009; Navarro et al. 2010; Ludlow et al. 2011),

ρEinasto = ρs exp

(
− 2

α

[(
r

rs

)α
− 1

])
. (1.2)

Either way, the two functional forms agree in several critical ways. Both are normalized by

a scale density ρs which adjusts the profile to different halo masses. Second, the profiles

gradually steepen with radius. Third, they depend on an extra parameter besides halo mass:

the scale radius, rs, where the profile reaches a logarithmic slope of −2. This radius can

equivalently be expressed as a concentration, the ratio of an outer radius and the scale radius,

c = R/rs (see Chapter 1.2 for the exact definition). The Einasto profile additionally relies on

α which determines how quickly the profile steepens, but α correlates so tightly with peak

height that it does not represent a truly independent parameter (Gao et al. 2008; Dutton &

Macciò 2014).

These findings have important implications regarding the question of universality: halo

profiles are universal in the sense that they follow a common functional form such as the

NFW or Einasto profiles. However, these forms depend not only on mass, but also on

concentration, ρ(r) = ρ(r,M, c)! We could restore a universal shape ρ(r,M) if we could

describe concentration as a universal function of only mass, c = c(M). In reality, however, c

has been found to depend on mass, redshift, and the cosmological parameters C in a complex

fashion, c = c(M, z, C). The first part of this thesis is dedicated to finding a simpler, more

universal expression for c that does not explicitly depend on redshift and cosmology.
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1.1.3 Concentration as a Second Parameter

Given the importance of concentration, its calibration has been the subject of numerous

studies. Navarro et al. (1996, 1997) first suggested a model in which concentration depends

on the epoch at which a certain fraction of a halo’s mass has been assembled. Although this

original model was shown to predict an incorrect evolution of concentration (Bullock et al.

2001), subsequent studies validated the general idea that concentration is related to a halo’s

assembly history. Bullock et al. (2001, see also Wechsler et al. 2002 and Zhao et al. 2003a)

showed that the scale radius of a halo remains approximately constant once the accretion

rate has slowed down, meaning that concentration evolves with the virial radius, c ∝ Rvir.

While a halo accretes rapidly, on the other hand, c ≈ const (Zhao et al. 2003a; Tasitsiomi

et al. 2004). Overall, there is a tight relation between concentration, the shape of the profile

at any given time, and the mass accretion history (MAH) of the main halo progenitor (Zhao

et al. 2003a, 2009; Ludlow et al. 2014). As discussed in Chapter 1.1.1, the MAH depends on

the amplitude and shape of the initial density peak (e.g., Dalal et al. 2008, 2010), which, in

turn, depend on the peak height as well as on the parameters of the background cosmological

model. Thus, halo concentrations depend on mass, redshift, and cosmological parameters.

Many theoretical studies have calibrated these dependencies using cosmological simula-

tions (Avila-Reese et al. 1999; Jing 2000; Bullock et al. 2001; Coĺın et al. 2004; Dolag et al.

2004; Neto et al. 2007; Duffy et al. 2008; Gao et al. 2008; Macciò et al. 2008; Klypin et al.

2011; Muñoz-Cuartas et al. 2011; Prada et al. 2012; Bhattacharya et al. 2013; Dutton &

Macciò 2014; Klypin et al. 2014), usually approximating the relation between concentration

and mass (or peak height) as a power-law. The main limitation of such parameterized fits

to simulation results is that they generally cannot be extrapolated beyond the cosmological

model, mass, and redshift range for which they were calibrated.

For this reason, a number of more general models for halo concentrations have been

proposed, many of them based on the tight connection between halo concentration and for-
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mation epoch (Navarro et al. 1997; Bullock et al. 2001; Eke et al. 2001; Zhao et al. 2009;

Giocoli et al. 2012). Given the influence of the parameters characterizing the initial density

peak on a halo’s MAH, one might expect that concentration should be a function of such

peak parameters. Indeed, numerical studies have shown that much of the dependence of

concentration on cosmology and redshift can be taken into account by expressing concentra-

tions as a function of peak height, ν (see Equation (1.6) below; Zhao et al. 2009; Prada et al.

2012; Ludlow et al. 2014; Dutton & Macciò 2014). At the same time, these studies showed

that the c–ν relation is not quite universal with redshift, prompting Prada et al. (2012) to

present a fitting formula which parameterizes the extra dependency using an arbitrary time

rescaling function. This model, however, fails for non-ΛCDM cosmologies, as we show in

Chapter 3.3.3.

Given the general logic that halo concentration and MAH should depend on the prop-

erties of the initial density peak, it is natural to interpret the non-universality of the c–ν

relation as an indication that there is at least one additional peak variable that controls

concentration. In Chapter 3, we quantify deviations of the c–ν relation from universality for

different choices of the “virial” radius, and explore the possible second parameter controlling

concentration. We identify the local slope of the power spectrum, n, as such a parameter,

and present an accurate model1 in which halo concentrations depend only on ν and n. This

model is universal in the sense that it does not explicitly depend on redshift or cosmological

parameters.

We note that either an explicit or implicit dependence of concentration on the power

spectrum slope is also included in the models of Eke et al. (2001), Bullock et al. (2001),

and Zhao et al. (2009). However, the specifics of these models, particularly the ways in

which the dependence on the power spectrum slope is modeled, differ significantly from our

1. While our proposed functional form of the c(ν, n) relation is a fitting function that
is not derived from first principles, we refer to it as a “model” because it is based on the
physical insight that concentration can be expressed as a function of only ν and n.
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model. We demonstrate that our model accurately describes concentrations in both ΛCDM

cosmologies with different parameters and self-similar cosmologies with power-law spectra

and Ωm = 1. We also show that the model provides reasonably accurate predictions for

Earth–mass halos at z = 30, far outside the mass and redshift regime in which the model

was calibrated. Although ultimately the concentrations of realistic halos are impacted by

baryonic effects which are still rather uncertain (Rudd et al. 2008; Duffy et al. 2010; Velliscig

et al. 2014), the results presented in this thesis demonstrate that a simple, universal baseline

model of concentrations does exist. While we focus on the NFW approximation to the inner

halo profiles, our conclusions are general and applicable to concentrations defined for other

analytical profiles such as the Einasto profile (Dutton & Macciò 2014) and the functional

form proposed in Chapter 4.3.

1.1.4 The Shape of the Outer Profile and the Definition of the Halo

Boundary

Equipped with the NFW or Einasto functional forms and our model for concentration, we

have obtained a reasonably accurate description of the inner halo density profile, r <∼ Rvir

(see Chapter 1.2 for the definition of Rvir). It is not clear, however, whether the NFW or

Einasto fitting formulae remain valid at larger radii. Virtually all of the work on density

profiles cited in Chapter 1.1.2 focused on the innermost regions of halos which are critical

for understanding the observed distribution of mass within the visible regions of galaxies.

Nowadays, the outer regions are increasingly being probed by X-ray and Sunyaev–Zel’dovich

effect observations of clusters of galaxies (e.g., Reiprich et al. 2013) and weak-lensing analyses

(e.g., Mandelbaum et al. 2006; Umetsu et al. 2011). In order to interpret such observations

properly, we need to understand the theoretical expectations for the outer density profiles.

For example, Becker & Kravtsov (2011) showed that typical cluster-sized halos exhibit devia-

tions from the NFW form, and that NFW profile fits to shear profiles extended to large radii
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can result in sizeable systematic bias in weak-lensing mass measurements (see also Oguri &

Hamana 2011). Although a number of recent studies have considered the overall shape of the

density profiles at large radii and proposed analytic profiles to describe them (Prada et al.

2006; Betancort-Rijo et al. 2006; Tavio et al. 2008; Cuesta et al. 2008; Oguri & Hamana

2011), it is not yet clear whether the shape applies to all halos in different stages of their

evolution.

In Chapter 4, we present a systematic study of the outer density profiles of halos out

to 9Rvir. We find that the outer profiles carry signatures of a halo’s mass accretion rate,

a hitherto unknown dependence which leads to significant departures from the NFW and

Einasto forms. In particular, the profiles of rare or fast-accreting halos steepen beyond the

expected slopes at r >∼ 0.5Rvir. We propose a new fitting formula that accounts for this

behavior and report best-fit parameters for the outer profiles as a function of peak height

and mass accretion rate. Comparing the evolution of density profiles across redshift, we find

that their universality over time depends critically on the definition of the halo boundary,

namely whether R is defined with respect to the mean or critical density of the universe.

The latter result reminds us of one of the fundamental questions posed at the very begin-

ning of this chapter: how should the halo boundary be defined? The spherical overdensity

mass definition (Chapter 1.2) is somewhat arbitrary and its evolution over time includes an

unphysical “pseudo-evolution” which does not correspond to the physical accretion of mass

(Diemer et al. 2013b). Thus, in Chapter 5, we propose a new, physically motivated definition

of the halo boundary. We investigate the physical origin of the steepening of the profiles, and

show that it corresponds to the caustic at the apocenter of the first orbit of infalling matter,

a feature predicted by the spherical collapse model (Fillmore & Goldreich 1984; Bertschinger

1985; Adhikari et al. 2014, see Chapter 1.1.1). We call this location the “splashback radius”

and calibrate its dependence on halo mass, mass accretion rate, and redshift.
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Figure 1.1: The relation between peak height, ν, and spherical overdensity mass at different
redshifts (the value of ∆ depends on the spherical overdensity definition used). The gray
shaded area at the bottom indicates the mass range beyond the resolution limit of our
simulations at (1000 particle masses in the L0063 simulation box, or 1.7× 1010 h−1 M�; see
Chapter 2). The circles mark the edges of the ν bins used in the analysis of halo density
profiles (Chapter 4). We note that this even separation in ν-space corresponds to an emphasis
on large halo masses.

1.2 Definitions

Throughout the thesis, we assume flat ΛCDM cosmologies in which the energy density of the

universe is composed of cold dark matter, baryons, and a cosmological constant. We denote

the mean matter (cold dark matter and baryon) density of the universe ρm, the critical

density ρc, and their ratio Ωm(z) ≡ ρm(z)/ρc(z) ≤ 1. Due to the assumption of flatness, the

fractional density of dark energy is ΩΛ = 1− Ωm.

We denote the three-dimensional halo-centric radius as r, reserving capital R for specific

radii used to define the halo boundary, and thus halo mass. The spherical overdensity mass

is defined as the mass within the radius enclosing a given density contrast ∆ relative to ρm
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or ρc at a particular redshift, such that

M∆m = M(< R∆m) =
4π

3
∆ρm(z)R3

∆m , (1.3)

for example R200m and M200m, or

M∆c = M(< R∆c) =
4π

3
∆ρc(z)R3

∆c , (1.4)

for example R200c and M200c. We reserve the labels Mvir and Rvir for a varying contrast

∆vir(z) which we compute using the approximation of Bryan & Norman (1998). The con-

centration of a halo is defined as the ratio of the virial radius to the scale radius, rs,

c∆ ≡ R∆/rs , (1.5)

where c carries the same label as R, such as c200c. In our analysis, we often express halo

mass as peak height, ν, which is defined as

ν ≡ δc
σ(M, z)

=
δc

σ(M, z = 0)×D+(z)
, (1.6)

where δc = 1.686 is the critical overdensity for collapse derived from the spherical top hat

collapse model (Gunn & Gott 1972, we ignore a weak dependence of δc on cosmology and

redshift), and D+(z) is the linear growth factor normalized to unity at z = 0,

D+(z) =
5Ωm,0

2
E(z)

∫ ∞
z

1 + z

E(z)3
dz (1.7)

where E(z) = H(z)/H0 is the dimensionless Hubble constant normalized to z = 0 (e.g.

Eisenstein & Hu 1999). Furthermore, σ is the rms density fluctuation in a sphere of radius
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R,

σ2(R, z) =
1

2π2

∫ ∞
0

k2P (k, z)|W̃ (kR)|2dk . (1.8)

where W̃ (kR) is the Fourier transform of the spherical top hat filter function, and P (k, z) =

D2
+(z)P (k, 0) is the linear matter power spectrum. The corresponding variance for a partic-

ular mass, σ(M), is defined such that

M = (4π/3)ρm(z = 0)R3 . (1.9)

We use the accurate approximation of Eisenstein & Hu (1998) to compute P (k), normalized

such that σ(8 h−1Mpc) = σ8. Finally, the characteristic non–linear mass, M∗, is defined as

the mass where σ(M∗) = δc, and thus ν(M∗) = 1. As with the mass and radius definitions

above, we use ν∆ to denote the peak height defined by setting M = M∆ in Equation (1.9).

Figure 1.1 shows the relation between halo mass and peak height, the dots in the Figure

indicate the peak height bins used to split halo samples in Chapters 4 and 5.

1.3 Public Code

The models for the density profiles and concentrations presented in this thesis require the fast

computation of certain non-trivial, cosmology-dependent quantities such as the variance of

the density field, σ. To facilitate the use of our models, we provide the stand–alone Python

module Colossus (Diemer 2015). An acronym for COsmology, haLO, and large-Scale

StrUcture toolS, Colossus is a light-weight, pure-python, performance oriented module

which can be downloaded at benediktdiemer.com/code.

Within the Colossus framework, we have implemented the fitting model for halo density

profiles proposed in Chapter 4.3, our model for the concentration-mass relation in Chapter

3.2, as well as the calibrations of the splashback radius discussed in Chapter 5.2. Colossus

can compute the predictions of these models for arbitrary cosmologies, as well as perform
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numerous other calculations related to cosmology, halos, and large-scale structure.
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CHAPTER 2

SIMULATIONS AND DATA ANALYSIS

In this chapter, we give a detailed description of our N -body simulations (first presented in

Diemer et al. 2013a; Diemer & Kravtsov 2014, 2015). We list the chosen input parameters

and describe the codes used to run and analyze the simulations, as well as some verification

tests.

2.1 Input Parameters

A cosmological N -body simulation typically represents the matter in the universe as a pe-

riodic cube in comoving coordinates which contains only collisionless dark matter particles.

Thus, a simulation is defined by a relatively small set of parameters:

• Cosmological parameters; the cosmology determines the mass of each dark matter

particle (through Ωm), the expansion rate, H(z), as well as the power spectrum of the

initial fluctuations (through Ωm, ΩΛ, Ωb, σ8, and ns; e.g., Eisenstein & Hu 1998).

• The size of the simulation box in comoving units.

• The number of particles in the simulation box, N3; combined with the box size and

cosmology, this number determines the mass of each particle or “mass resolution”.

• The force resolution length; if the gravitational forces were resolved to infinitesimally

small distances between particles, the time step necessary to resolve a particle’s orbit

could become infinitesimally small, grinding the simulation to a halt. Furthermore,

such small-scale forces can lead to spurious, unphysical two-body interactions (Moore

et al. 1998; Knebe et al. 2000). These issues are alleviated by giving each particle a finite

extent according to a kernel function with a particular smoothing length. However,

within a few such force resolution lengths, the force between two particles is decreased
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compared to the true, Newtonian force. As a result, the density profiles of collapsed

halos cannot be trusted at scales smaller than ∼ 4 force resolution elements (Moore

et al. 1998; Klypin et al. 2015).

The box size, mass resolution, and force resolution need to be chosen to optimize a simulation

for the problem at hand. Here, we wish to measure the structural properties of halos across

a wide range of masses and redshifts, from small galaxy halos (M ∼ 1010 h−1 M�) to

massive clusters (M ∼ 1015 h−1 M�). Assuming that we need 1000 particles to reliably

measure density profiles and concentrations (as shown in Chapters 2.4 and 2.5), the former

requirement translates into a particle mass mp ∼ 107 h−1 M�. The latter requirement

demands a large box size of ∼ 2 Gpc3, since the halo mass function (i.e., the number of halos

per volume) drops exponentially at high masses (e.g., Tinker et al. 2008). Combining these

resolution and size requirements in one simulation, we would need about 40, 0003 ≈ 1014

particles. For comparison, the well-known Millennium Simulation (Springel et al. 2005)

followed 1010 particles, and the largest, very expensive present-day simulations reach about

5 × 1011 particles (Heitmann et al. 2014). Thus, no currently feasible simulation provides

the desired dynamic range.

However, since we are primarily interested in isolated halos (i.e., not subhalos that live

within another, larger halo), it is more important to resolve a large range of halo masses with

sufficient resolution rather than resolve a smaller range of masses with excellent resolution.

Thus, we simulated a series of box sizes between 2000 and 31.25 h−1Mpc with a relatively

standard resolution, 10243 (Table 2.1). Each box size is reduced by a factor of two compared

to then next larger box, and thus a factor of eight in volume, corresponding to an eight

times higher mass resolution. By combining the results from these simulations we obtain

halo samples that are relatively evenly resolved across a very wide range in mass, thus

avoiding resolution-dependent trends with mass (such as those discussed in Chapter 2.5).

The smallest box, L0031, could not be run past z = 2 as structures on the scale of the entire
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Cosmology H0 Ωm ΩΛ Ωb Ωk Ων σ8 ns P (k)

Planck 67 0.32 0.68 0.0491 0 0 0.834 0.9624 CAMB
WMAP (Bolshoi) 70 0.27 0.73 0.0469 0 0 0.82 0.95 CAMB
Bolshoi+High-σ8 ” ” ” ” ” ” 0.9 ” Like Bolshoi
Bolshoi+High-Ωm ” 0.4 0.6 ” ” ” 0.82 ” Like Bolshoi
Self-similar 70 1 0 0 0 0 0.82 ... P (k) ∝ kn

Table 2.2: Cosmological parameters of the N -body simulations listed in Table 2.1. The
Bolshoi cosmology (Klypin et al. 2011) corresponds to the WMAP7 cosmology of Komatsu
et al. (2011). The Planck values correspond to the Planck-only best-fit values in Table 2 in
Planck Collaboration et al. (2014). Some of the parameters in both the Planck and Bolshoi
cosmologies are rounded off for convenience.

box become non-linear at that time, meaning that the expansion rate of the box is can no

longer be assumed to equal the cosmological rate.

Besides mass resolution, the second parameter that determines the resolution of an N -

body simulation is its force resolution. Again, our choice is motivated by the halos we wish

to analyze: we set the force softening to a quarter of the scale radius expected for a halo with

Mvir = 1000mp, using the concentration–mass relation of Zhao et al. (2009). According to

this criterion, a force softening of ε ≈ 1/30 × L/N is appropriate for large box sizes such

as 1 h−1Gpc, while for the smallest box ε ≈ 1/60 × L/N . This method ensures that the

limits due to force and mass resolution are comparable, leading to optimal computational

efficiency by avoiding “wasted” mass or force resolution.

Most of the simulations (L0031–L2000) were carried out assuming the WMAP7 cosmol-

ogy (Komatsu et al. 2011, see Table 2.2), identical to that adopted in the Bolshoi simulation

of Klypin et al. (2011). In order to check the dependence of the results on cosmology, we

added a few runs using a cosmological model consistent with recent constraints from the

Planck satellite (Planck Collaboration et al. 2014), as well as a number of test simulations

in which only one particular parameter was changed from the value adopted in the fiducial

WMAP7 cosmology. Finally, we ran a series of self-similar models with power-law power

spectra of four different slopes (Table 2.1). These power-law simulations allow us to directly
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Figure 2.1: The initial density field at z = 49 in the L0063 simulation. The density is
projected through a thin slice of thickness 0.5 h−1Mpc at x = 0.

measure the dependence of halo properties on the power spectrum slope (Chapter 3).

2.2 Simulations and Halo Finding

The procedure of running an N -body simulation, testing its power spectrum, and finding

halos involves the following steps:

1. Compute the initial matter power spectrum, P (k), for the simulation cosmology (Table

2.2) using the Boltzmann code Camb (Lewis et al. 2000).

2. Generate initial conditions. This step corresponds to creating an equally spaced grid

of particles, and displacing them from their initial positions, resulting in a random

realization of a Gaussian random field with the power spectrum P (k). The initial

conditions need to be set at high redshift, before non-linear collapse becomes important.

The analytic approximation can be first-order (“Zel’dovich initial conditions”, e.g.
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Figure 2.2: The evolution of the density field in the L0063 simulation, shown at redshifts
20, 10, 5, 2.4, 0.8, and 0 (from left top to right bottom). The density is projected through a
thin y− z slice of thickness 0.8% times the box size, at x = 0. See Chapter 2.2 for a detailed
description.
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Figure 2.3: Same as Figure 2.2, but showing the density field at z = 0 in the L2000, L1000,
L0500, L0250, L0125 and L0063 simulations (from left top to right bottom). See Chapter
2.2 for a detailed description.
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Figure 2.4: Same as Figure 2.2, but showing the density field at z = 2 in the self-similar
simulations with power law index −1, −1.5, −2, and −2.5 (from left top to right bottom).
See Chapter 2.2 for a detailed description.
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Doroshkevich et al. 1980; Klypin & Shandarin 1983), or higher-order. Here, we use the

second-order Lagrangian perturbation theory code 2LPTic (Crocce et al. 2006). The

simulations were started at redshift z = 49 which has been shown to be sufficiently

high to avoid transient effects (Crocce et al. 2006). The self-similar models with the

shallowest slopes were started at higher redshift as power on small scales develops

very early in such cosmologies. Figure 2.1 shows the initial density field in the L0063

simulation.

3. Run the simulation using the publicly available code Gadget2 (Springel 2005). Gad-

get2 relies on a hybrid method to compute the gravitational forces on particles: at

large scales, the density field is projected onto a grid and transformed into Fourier

space where the Poisson equation can be solved analytically. The solution is trans-

formed back into real space to give the acceleration at each grid point. At smaller

scales, Gadget2 employs a tree algorithm which bundles the long-range forces from

many particles (tree branches) while resolving the forces from nearby particles more

accurately. The simulations listed in Table 2.1 took between 5, 000 and 120, 000 CPU

hours on the Midway cluster at the Research Computing Center at the University of

Chicago. For each simulation, 100 snapshots (containing particle IDs, positions, and

velocities) were written to disk, corresponding to a total volume of 3 TB per simulation.

4. Find all isolated halos and subhalos in each snapshot. We employ the halo finder

Rockstar (Behroozi et al. 2013a) which uses the friends-of-friends algorithm (Davis

et al. 1985) to connect groups of particles in phase–space. In this thesis, we consider

only the density profiles of isolated halos. We do not, however, attempt to remove

the contribution of subhalos to the density profiles of their host halos, because it is

often ambiguous whether a particle belongs to the host or subhalo, and because such

a procedure cannot be replicated in observations. A halo is deemed to be isolated

if its center does not lie inside Rvir of another, larger halo. The virial radii for the
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various mass definitions were derived using only gravitationally bound particles. We

have verified that the difference between bound masses and those including all particles

is negligible for the vast majority of host halos we consider in this study.

5. Compute merger trees using the Consistent-Trees code of Behroozi et al. (2013b).

Whenever we refer to the progenitor of a halo, we mean the halo along its most massive

progenitor branch at each redshift. We use the merger trees to identify halos with recent

major mergers and to estimate the mass accretion rates using the masses of the main

progenitors over a particular redshift interval.

Figures 2.2 through 2.4 show the density field in some of the simulations at various

times. Each panel displays a slice with the same dimensions as the box size (e.g., 62.5 by

62.5 h−1Mpc) and a thickness of 0.8% of the box size. The density field was computed by

spreading the mass of each particle over a smoothing kernel with a smoothing length that

depends on the distance of the 64 nearest neighbors of a particle.

Figure 2.2 shows the density field in the L0063 simulation at redshifts between 20 and 0.

The top left panel shows the z = 20 snapshot, only ∼ 100 Myr after the initial conditions

at z = 49 (Figure 2.1; note the different color schemes). Figure 2.3 shows only snapshots at

z = 0, but for different box sizes. While the dark matter structures are almost uniform over

the size of the L2000 box (top left), structures of the same size as the box appear in the L0063

simulation (bottom right). The structures in the different boxes have similar shapes because

the amplitudes and phases of the density modes in the initial conditions were generated

using the same random number seed. Finally, Figure 2.4 shows the z = 2 snapshots of the

self-similar simulations with different slopes of the power-law power spectrum. A shallow

power law (top left) leads to rapid structure formation of high redshift, whereas the box with

a steep spectrum (bottom right) has formed barely any visible structure.
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Figure 2.5: Evolution of the power spectrum in the L0063 (left) and L1000 (right) simu-
lations. The input power spectrum as computed by Camb is shown with an orange line.
The power spectrum of the initial conditions (red) matches this input, as expected. The
cyan lines show the linear evolution of the input power spectrum at various redshifts. The
real density field at those redshifts (blue) evolves linearly at large scales and early times, but
more and more non-linearly at small scales and late times. Note that the differences between
the input spectrum and the initial realization, i.e. the deviations due to the randomness of
the Gaussian field, are divided out in the subsequent redshifts in order to highlight actual
deviations from the linear prediction. The vertical gray dashed line indicates the Nyquist
frequency, i.e. the limit below which the power spectrum is not resolved.

2.3 Validation using Power Spectra

Before we further analyze the outputs of our N -body simulations, we need to validate that

they evolved the initial density field correctly. This check can be performed by verifying

that the power spectrum of fluctuations, P (k), evolves as expected. Figure 2.5 shows such

a comparison for the L0063 and L1000 boxes. The power spectra were computed with Matt

Becker’s CosmoPower code (private communication). The increased noise in the measured

power spectrum around three evenly spaced k-modes is caused by the folding technique used

by the code (Jenkins et al. 1998; Colombi et al. 2009).
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First, let us consider the input power spectrum (orange) and the actual power spectrum of

the initial conditions (red). Their agreement indicates that the second-order approximation

used to generate the ICs was valid at the initial redshift (z = 49). This match is not

guaranteed: for example, the second-order approximation cannot reproduce the power-law

spectrum with slope −1 at z = 49 due to the large power at small scales. Thus, that

simulation had to be started at higher redshift (z = 119, Table 2.1).

Second, we consider the subsequent evolution of the power spectrum. In order to focus on

the evolution, we divide out the random fluctuations introduced in the initial conditions, i.e.

the differences between the red and orange lines. The cyan lines show the linear prediction,

P (k, z) = P (k, zi)

(
D+(z)

D+(zi)

)2

. (2.1)

As expected, the power spectrum evolves linearly at large scales, but super-linearly at small

scales. As structure forms hierarchically, larger and larger scales become non-linear. Once

the smallest k-modes in a box (the largest structures) collapse non-linearly, the simulation

cannot be trusted any more as the unresolved modes that are larger than the box become

important. For the simulations shown in Figure 2.5, the largest modes are still in the linear

regime at z = 0.

2.4 Extracting Halo Density Profiles

We extract spherically averaged density profiles of halos in 80 logarithmically spaced bins

between 0.05 Rvir and 10 Rvir. We combine the profiles from all simulations of the same

cosmology in order to access a large range of masses and redshifts. As a check, we compared

the density profiles to a set that was extracted from the Bolshoi simulation (Klypin et al.

2011) using a different code and found excellent agreement.

We test for resolution effects by comparing halo samples of the same mass range from
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different simulation boxes (corresponding to different mass and force resolutions; see Chapter

2.1). We find that the mean and median profiles of halos withNp ≥ 1000 particles withinRvir

differ by less than 5% for the entire radial range 0.1Rvir < r < 9Rvir, with a typical difference

of ≈ 3% at most radii. The differences are random and do not exhibit any systematic trend

with mass or redshift for all masses and redshifts used in our analyses. Given that the

simulations were started from different initial conditions, the mean and median profiles of

halos of the same mass may differ somewhat due to sample variance or Poisson fluctuations.

Such random differences can therefore be expected and are sufficiently small not to affect

our conclusions.

We conclude that the profiles of halos with Np ≥ 1000 particles within Rvir have

converged to better than 5% in the radial range 0.1Rvir < r < 9Rvir, and we adopt

Np = 1000 as the lower limit for our halo samples, corresponding to a mass limit of

Mvir ≥ 1.7×1010h−1 M� in the smallest simulation box. The limit was relaxed to Np = 200

for the progenitors of halos that were used to estimate the mass accretion rate. The profiles

of these progenitor halos were not used for any analyses, however.

2.5 Extracting Mean and Median Concentrations

In order to measure concentration, we need to measure the scale radius, rs (Chapter 1.2).

The scale radius probes the interior of halos, and is thus susceptible to resolution effects

(Moore et al. 1998; Klypin et al. 2001). In particular, rs needs to be resolved by a sufficient

number of force resolution lengths and particles. A fixed minimum number of particles inside

the virial radius does not guarantee a particular number of force resolution elements within

the scale radius, because concentration depends on mass and redshift, and, more importantly,

because the radius corresponding to a particular halo mass decreases with redshift due to

the increasing reference density (Equations (1.3) and (1.4)). Thus, we demand a minimum

halo mass at each redshift and for each simulation that fulfils, on average, the following three
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criteria.

1. There must be at least 1000 particles inside R200c. This requirement ensures that all

50 radial bins used to construct the density profile are reasonably sampled.

2. There must be at least 200 particles within rs, following Klypin et al. (2001) who found

that the density profiles of halos converge to better than 10% at radii enclosing at least

200 particles.

3. rs must be at least six times the force softening length, ε. Various authors have observed

that the density profile of halos is reliable only at radii greater than 4–5 ε (Moore et al.

1998; Klypin et al. 2001). These authors used softenings that corresponded to the

Newtonian force at only 2–3 softening lengths, while the Gadget2 code used in this

study employs a spline softening that reaches the Newtonian level at a smaller distance.

The requirement of r > 6ε is thus relatively conservative. We adopt it to account for

the fact that the scatter in concentrations at fixed mass is quite large, meaning that

some halos have much smaller scale radii than an average halo of the same mass.

We must not compute these criteria for each halo separately, as that would, at fixed mass,

preferentially select halos of low concentration and thus bias our measurement. Instead, we

compute the average scale radius at a given mass and redshift using the model of Zhao et al.

(2009). For the self-similar cosmologies, we find that this model does not reproduce our

simulation results and thus use a fit to our own results instead. When selecting only halos

that match the requirements stated above, we find that the c–M relation has converged

to within the statistical error. For example, making all of the requirements stricter by a

factor of two does not change the mean and median relations at any redshift by more than

the statistical uncertainty. Our resolution limits are deliberately stringent because the large

scatter in the c–M relation means that individual halos may have smaller scale radii, and

thus fewer particles and force resolution elements within rs.
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A further test for resolution effects is to compare concentrations in simulations with very

different resolutions. For example, we compare our results to the c–M relation of halos in

the Bolshoi simulation (Klypin et al. 2011), measured with the same halo finder as in this

thesis. While the halos from our set of simulation boxes are sampled by a relatively uniform

number of particles across a large range of masses, the largest halos in the Bolshoi simulation

contain about 104 times more particles than the smallest halos for which concentrations were

measured. A high mass resolution leads to higher concentrations (see discussion in Chapter

3.2), meaning that the Bolshoi concentrations are about 10% higher than ours at high masses,

and about 10% lower at low masses, leading to a shallower c–M relation (Klypin et al. 2011).

These results imply that the c–M relation measured in simulations always tends to be biased

low due to the finite mass resolution.

After we apply the resolution cuts described above to the halo samples from each simu-

lation, those samples are combined into one sample per redshift. For our fiducial cosmology,

this overall sample contains ∼ 86, 000 halos at z = 0 and ∼ 3000 halos at z = 6.1 We do not

exclude unrelaxed objects or halos that contain a large amount of substructure, although

such halos are often discarded in studies of halo structure (e.g., Muñoz-Cuartas et al. 2011;

Ludlow et al. 2014; Dutton & Macciò 2014). We choose not to exclude unrelaxed halos for

several reasons. First, such a cut leads to a c–M relation that is biased high because low

concentrations are typical of halos in the rapid mass accretion stage which are more likely

to be removed by a relaxation cut (e.g., Neto et al. 2007; Macciò et al. 2008; Bhattacharya

et al. 2013, see also the discussion in Chapter 3.3.3). Second, an equivalent exclusion can-

not easily be performed in observations (e.g., Meneghetti et al. 2014). Third, the fraction

of excluded halos is likely a function of peak height and redshift, potentially introducing a

1. The resolution cuts in Diemer & Kravtsov (2015) were too stringent; by accident, our
calculation assumed that the force softening length was constant in physical rather than
comoving coordinates, leading to overly strict resolution cuts at high redshift. However,
including the previously excluded halos does not change the conclusions or our c–M model
significantly. Thus, we present the original figures and model in this thesis.
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spurious dependence of the c–ν relation on these quantities. Finally, we find that the density

profiles of halos even in the most active mass accretion regime are, on average, quite regular.

Even though they are not as accurately fit by the NFW form as those of slowly accreting

halos, their best-fit scale radii reflect real features of the profiles (Figure 4.1).

Having defined our halo sample, we are now in a position to extract the mean and median

concentrations. In this study, we use the concentrations estimated by the Rockstar halo

finder (Chapter 2.2). Rockstar finds the scale radius of a halo by fitting the NFW profile

(Equation (1.1)) to the halo’s spherical mass profile. This fit is performed using only the

bound particles within Rvir. These particles are split into 50 radial bins, equally spaced in

enclosed mass (Behroozi et al. 2013a). The contributions of the fitted NFW profile to the

same mass bins are computed until the solution with the minimum bin-to-bin mass variance

has been found. All bins receive equal weights, except bins at radii smaller than three force

resolution softenings from the halo center, which are down-weighted by a factor of 10.

While the normalization of the NFW profile, ρs, is robust with respect to the fitting

procedure, the best-fit rs can depend on technical details such as the number of bins, the

radial range used in the fit, the merit function that is minimized, or the weights given to

the different radial bins. These details have a particularly large impact if the NFW profile

is not a good fit to the halo profile (Meneghetti & Rasia 2013). Dooley et al. (2014) found

that the mean concentrations computed by Rockstar are, on average, 12% higher than

concentrations found using the Subfind halo finder (Springel et al. 2001), and that the

slope of the Rockstar c–M relation is significantly steeper.

These conclusions, however, were derived for the mean rather than the median c–M

relation. The latter suffers less from extremely low or high concentration values which are

often the result of poor fits, and are thus particularly dependent on the fitting algorithm

used. For example, Figure 2.6 shows the distribution of c200c in three mass bins at z = 0.

The distribution of concentrations has tails at both low and high values of c which are not
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Figure 2.6: Distribution of concentration values at high, intermediate, and low masses,
at z = 0, and for our fiducial cosmology. Neither the normal (Gaussian) nor log-normal
distributions can reproduce the measured distribution of c200c in all three bins. The mean
concentrations are not shown as they are hard to distinguish from the median given the large
range of c shown.

29



well described by the log-normal (e.g., Jing 2000; Bullock et al. 2001; Neto et al. 2007) or

Gaussian (Reed et al. 2011; Bhattacharya et al. 2013) distributions in all three mass bins.

Thus, it is not clear whether the linear or logarithmic mean are a better description of the

sample mean. In the high and low-mass bins, the linear mean is 6% and 12% larger than

the median, respectively. In the intermediate-mass bin, however, the linear mean and the

median more or less coincide, while the logarithmic mean is about 6% lower than the median.

In summary, there is no clear preference for computing either the linear or logarithmic

mean. The median, however, is much less sensitive to outliers and independent of whether

the data is binned in linear or logarithmic space. Thus, when considering the c–M relation in

detail in the following chapter, we use the median c–M relation throughout, unless otherwise

stated. As both the mean and median concentration are of interest, we calibrate our best-fit

model for both. We bin all masses and peak heights in log space, regardless of whether the

plots are in linear or log space. The c–ν and c–M relations are binned separately, rather

than translating the binned data from mass to peak height or vice versa.
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CHAPTER 3

RESULTS I: A UNIVERSAL MODEL FOR HALO

CONCENTRATIONS

In this chapter, we investigate the concentrations of halos as defined in Chapter 1.2. We

develop a physically motivated, universal model of the c–M relation, meaning a functional

form that depends on as few parameters as possible and is independent of cosmology or

redshift. Our results were first published in Diemer & Kravtsov (2015).

3.1 Universality and Mass Definition

As a first step, we identify the optimal halo radius definition for such a model. As we

discussed in Chapter 1, we can generally expect that halo structure, and thus concentration,

is a universal function of the shape of the initial density peaks. Indeed, numerical studies

have demonstrated that concentration is almost universal as a function of redshift at fixed

peak height, but not quite (Zhao et al. 2009; Prada et al. 2012; Ludlow et al. 2014; Dutton

& Macciò 2014).

Given that there are many commonly used definitions of the “virial” radius, and thus

many definitions of concentration (e.g., c500c, c200c, cvir, and c200m; see Chapter 1.2), we ask

the question whether the c–ν relation is most universal across redshifts for a certain definition.

For example, in Chapter 4 we will show that the density profiles of halo samples of the same

peak height, but at different redshifts, are most universal at small radii (r <∼ R200c) when

radii are rescaled by R200c, whereas they are most universal in units of R200m at large radii.

As concentration is a property of the inner halo profile, it stands to reason that the c–ν

relation should be most universal across redshifts when c200c is used. Furthermore, Dutton

& Macciò (2014) hint at a stronger redshift evolution of definitions other than c200c, and

Bhattacharya et al. (2013) showed that there is a difference in the evolution of cvir and c200c
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at high masses.

Figure 3.1 shows the c–ν relations for the c500c, c200c, cvir, and c200m definitions up to

z = 6. It is clear that the choice of definition has a large impact on the degree of non-

universality in the relations: while the c200c–ν relation comes closest to universality, the

cvir-ν and c200m-ν relations exhibit a much larger evolution at low redshifts. For example,

at ν = 1, c200c barely changes between z = 1 and z = 0, but the corresponding c200m evolves

from ∼ 6 at z = 1 to ∼ 11 at z = 0. The differences appear at low z because that is the

epoch when Ωm drops below unity and dark energy starts to dominate, which leads to a

different evolution of ρm and ρc. The universality does not further improve over c200c when

using definitions with a higher overdensity threshold, such as c500c (left panel of Figure 3.1).

The results in Figure 3.1 clearly demonstrate that c200c is preferable when devising a

universal, redshift-independent model for the c–ν relation. Many previous works on the c–

M relation have, in fact, used c200c as their measure of concentration (Navarro et al. 1996,

1997; Jing 2000; Neto et al. 2007; Duffy et al. 2008; Gao et al. 2008; Prada et al. 2012;

Ludlow et al. 2014; Dutton & Macciò 2014), but some authors used cvir (Bullock et al. 2001;

Wechsler et al. 2002; Zhao et al. 2009; Klypin et al. 2011; Muñoz-Cuartas et al. 2011) or

even c200m (Dolag et al. 2004). Of course, the universality of the c–ν relation may not be the

only consideration when choosing a concentration definition. Different definitions also lead

to different redshift evolutions of the concentration of individual halos, and thus different

shapes of the c–M relation (see Chapter 3.5). Given the results presented in Figure 3.1, we

focus on c200c for the remainder of this thesis.

Although the c200c–ν relation is more universal than definitions using lower overdensities,

it still exhibits sizeable deviations from universality of up to 25% around ν ≈ 2, significantly

larger than the statistical uncertainty on the relations. We have checked that these devia-

tions are not due to resolution effects by comparing the c200c–ν relation in simulations with

different resolution. Similar results were also recently found by Dutton & Macciò (2014). The
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Figure 3.1: Redshift evolution of the median concentration–peak height relation for different
mass definitions. The relation in units of c200c is significantly more universal across redshifts
than those in cvir and c200m. However, using higher overdensities, e.g., c500c, does not
improve the universality further. For consistency, c200c is plotted against ν200c etc., but the
changes in ν due to the different mass definitions are very small. The shaded area around
the z = 0 relation indicates the 68% scatter, the dark shaded area shows the statistical
uncertainty of the median. The scatter around the relations is about 0.16 dex at all redshifts,
masses, and for all mass definitions. It is shown only at z = 0 to avoid overcrowding, and
omitted in the rest of the plots in this thesis.

non–universality of the c–ν relation indicates that there is at least one additional parameter

besides peak height that influences concentration.

3.2 Analytical Model for Halo Concentrations

Let us consider the parameters that might control halo concentrations and their evolution. As

shown in previous studies, the mass dependence of the concentration of halos is a consequence

of their MAH (Wechsler et al. 2002; Zhao et al. 2003b, 2009; Ludlow et al. 2013), which,

in turn, is determined by the parameters of the background cosmological model. These

cosmological parameters control both the growth rate of the initial fluctuations as a function

of time and the linear matter power spectrum, P (k). The latter determines the statistical

properties of the peaks in the initial density field, such as their peak height as a function

of scale, and their curvature. As discussed earlier, expressing halo masses as peak heights

should, in principle, account for the dependence of concentration on cosmological parameters.

However, Figure 3.1 demonstrates that there is a residual dependence on at least one ad-
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ditional parameter. It is well known that halo concentrations depend on the power spectrum

slope in self-similar models (Navarro et al. 1997; Eke et al. 2001; Reed et al. 2005; Zhao et al.

2009, see also Figure 3.2). A natural candidate for the additional parameter is thus the local

slope of the power spectrum,

n(k) ≡ d lnP (k)

d ln k
, (3.1)

which for CDM cosmologies changes as a function of physical scale k. A fixed ν corresponds

to different masses at different redshifts, and thus corresponds to different values of n(k).

Physically, n can affect concentrations in two distinct ways. First, it determines the

steepness of the mass function of halos that merge with a given halo at different times

(Lacey & Cole 1993). It has been shown that the amount of substructure in the accreted

matter influences the concentration of a halo (Moore et al. 1999). While the matter accreted

smoothly or in low–mass halos is distributed to radii determined by its energy and angular

momentum, massive subhalos can lose angular momentum due to dynamical friction and

sink to the center of the accreting halo, increasing its concentration (Chandrasekhar 1943;

Boylan-Kolchin et al. 2008). The magnitude of this effect has been subject to some debate

(Moore et al. 1999; Huss et al. 1999; Coĺın et al. 2008). Although the effect is relatively

small, it is potentially sufficient to explain the modest deviations from universality observed

in the c–ν relation. At the same time, in the regime of a steep power spectrum, halos of

different masses collapse closer in time and major mergers will thus be more frequent. This

will result in a large fraction of unrelaxed halos, which is known to affect the normalization

and slope of the c–ν relation (Ludlow et al. 2012).

Second, n can affect concentrations via its effect on the shape of the initial density peaks.

Dalal et al. (2010) demonstrated that the MAH of a halo and its density profile are tightly

connected to the density profile of the corresponding initial peak. Thus, one might expect

that some parameter describing the peak shape should be used in our model. To this end,

we have explored the average curvature of peaks of a given height (Bardeen et al. 1986; Dalal
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Figure 3.2: Median c–ν relations for self-similar (left panel) and ΛCDM (right panel) cos-
mologies. The shaded areas show the statistical uncertainty around the median relations.
Left panel: concentrations in the four self-similar cosmologies (Table 2.2). The colors cor-
respond to the four different slopes n (−1, −1.5, −2, and −2.5), while the shading of the
lines indicates redshift, with darker lines corresponding to lower redshifts. The respective
redshifts are (2, 3, 4, 6, 8) for n = −1, (1, 1.5, 2, 4, 6, 8) for n = −1.5, (0.5, 1, 1.5, 2,
4) for n = −2, and (0, 0.25, 0.5, 1, 1.5, 2) for n = −2.5. As expected, the c–ν relation
does not evolve with redshift in power-law cosmologies. Right panel: comparison of the
power-law models with n = −2 and n = −2.5 to various redshifts in our fiducial ΛCDM
cosmology (dashed blue lines, darker color indicating lower redshift). The various redshifts
in the power-law cosmologies have been combined into one relation per simulation (solid
lines). The comparison demonstrates that the changing shape of the ΛCDM c–ν relation
with redshift is likely related to the changing local slope of the power spectrum at a fixed ν.

et al. 2010) as a possible second parameter affecting concentrations at fixed ν. We found,

however, that peak curvature cannot by itself explain deviations from universality observed

in the c–ν relation (see Chapter 6.2.2 for a detailed discussion).

We have chosen n as a second parameter for our model because it likely captures a

combination of the substructure and peak shape effects. While we do not have a solid

physical model predicting this overall effect, we calibrate it using simulations of power-law

cosmologies (Table 2.1). In such models, the c–ν relation is expected to be universal across

redshifts for a given cosmology, but to depend on n, the only input parameter of the model.

35



10−1 100 101 102 103 104 105 106

k [h/Mpc]

−3.0

−2.5

−2.0

−1.5

n
=
d

ln
P
/d

ln
k

CAMB Boltzmann Code
Eisenstein & Hu 1998, no BAO

1 2 3 4

ν

z = 0.0
z = 0.5
z = 1.0
z = 1.5

z = 2.0
z = 4.0
z = 6.0

10−510010510101015

Halo mass (h−1M�)

Figure 3.3: Logarithmic slope of the linear matter power spectrum, n, evaluated at different
scales, peak heights, and redshifts. Left panel: the slope of P (k) computed from the power
spectrum produced by the Camb Boltzmann code (Lewis et al. 2000, solid blue line), as
well as from the P (k) approximation of Eisenstein & Hu (1998, dashed red line) without
baryon acoustic oscillations to avoid oscillatory behavior in n for the largest halos. The top
axis shows the halo mass corresponding to the Lagrangian volume of radius R = 2π/k. This
scale gives a rough indication of what part of the power spectrum is most important for the
formation of halos of a given mass. The decrease in power in the Camb spectrum around
k ≈ 100h/Mpc is caused by the pressure of baryons which is not modeled in the Eisenstein
& Hu (1998) approximation. We note, however, that the Nyquist frequency of our smallest
simulation box is kN = 103h/Mpc so that these small scales are barely resolved. Right panel:
the slope at kR(ν, z) = κ 2π/R (Equation (3.5)), evaluated for halos of different peak heights
at different redshifts. At high z, the masses and radii corresponding to a fixed ν are smaller,
leading to steeper slopes.
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The left panel of Figure 3.2 shows the c–ν relations in our self-similar simulations with

n = −1, −1.5, −2, and −2.5. For each of these simulations, multiple redshifts are shown in

different shadings. As expected, the relations measured at different redshifts are consistent

with a single, universal c–ν relation for a model with a given n. However, the figure clearly

shows that the overall c–ν relation does depend strongly on n at a fixed ν. To quantify

this dependence, we fit the c–ν relations of the self-similar models with the following double

power-law function,

c200c =
cmin

2

[(
ν

νmin

)−α
+

(
ν

νmin

)β]
, (3.2)

where the concentration floor, cmin, and its location, νmin, are assumed to depend linearly

on the power spectrum slope,

cmin = φ0 + φ1n

νmin = η0 + η1n , (3.3)

while the slopes α and β are fixed. This functional form matches the results of all four self-

similar simulations well with only six parameters which can be determined via a least-squares

fit.

However, we are primarily interested in devising a model that works for all cosmologies,

and is particularly accurate for ΛCDM. In ΛCDM models, n varies over a considerably

narrower range than in the self-similar models we have explored. The right panel of Figure

3.2 shows the results of the n = −2 and n = −2.5 simulations, as well as the c–ν relations in

our fiducial ΛCDM cosmology at different redshifts. The ΛCDM relations mostly lie between

the relations for the n = −2 and n = −2.5 models, which approximately corresponds to the

range of P (k) slopes at the relevant scales in the ΛCDM power spectrum.

However, before we can test whether our model in Equation (3.2) also applies to ΛCDM

cosmologies, we need to properly define n for such models. The simplest definition of n is the
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Param. Value Description Equ.

Definition of Power Spectrum Slope

κ 0.69 Location in k-space where slope is evaluated 3.5

Best-fit c–ν relation (Median)

φ0 6.58 Normalization of concentration floor 3.3
φ1 1.37 Slope dependence of concentration floor 3.3
η0 6.82 Normalization of ν where c is minimal 3.3
η1 1.42 Slope dependence of ν where c is minimal 3.3
−α −1.12 Slope of c–ν relation at low ν 3.2
β 1.69 Slope of c–ν relation at high ν 3.2

Best-fit c–ν relation (Mean)

φ0 7.14 Normalization of concentration floor 3.3
φ1 1.60 Slope dependence of concentration floor 3.3
η0 4.10 Normalization of ν where c is minimal 3.3
η1 0.75 Slope dependence of ν where c is minimal 3.3
−α −1.40 Slope of c–ν relation at low ν 3.2
β 0.67 Slope of c–ν relation at high ν 3.2

Scatter (Independent of M , z, or Mass Definition)

σ 0.16 68% scatter in concentration (dex) ...

Table 3.1: Best-fit parameters of the concentration model

local slope of P (k) at some scale k. A natural scale for the “size” of a halo is its Lagrangian

radius,

R =

(
3M

4πρm(z = 0)

)1/3

, (3.4)

the same expression used to convert halo mass to radius in the definition of peak height in

Equation (1.9). The left panel of Figure 3.3 shows the logarithmic slope of P (k) for our

fiducial cosmology as a function of scale, k. The corresponding mass scales, k = 2π/R, are

indicated in the top axis. We compute P (k) using the approximation of Eisenstein & Hu

(1998), namely the version without baryon acoustic oscillations as they introduce oscillatory

behavior at the very highest halo masses. For comparison, we also show the slope of the

exact power spectrum, computed by the Boltzmann code Camb (Lewis et al. 2000).
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Figure 3.4: Comparison of our model with simulation data for the fiducial ΛCDM cosmology.
The dashed lines show the median c–ν (left) and c–M (right) relations predicted by our
c(ν, n) model, whereas the solid lines and shaded areas show the median concentrations of
simulated halos and their statistical uncertainties. Our model fits the measured relations to
better than ∼ 5% at those ν and z where c is measured reliably. The steepening of the slope
of the local power spectrum at higher z explains the decrease of the minimum concentrations
and the more pronounced upturn in the c–ν relation at high ν.
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The scale of the relevant effective slope will not, in general, be equal to the scale defined

in Equation (3.4) because the mass spectrum of halos with which a given halo merges is

determined by the slope on scales smaller than R. Nevertheless, we expect the bulk of the

effect on concentration to be caused by mergers with relatively massive halos, comparable

in scale to the main halo itself. Hence, one can argue that the range of scales over which the

effective slope should be measured is relatively small and should be close to R. Thus, we

define the effective wavenumber,

kR(ν, z) ≡ κ
2π

R
, (3.5)

which corresponds to a wavelength of 1/κ times the Lagrangian radius of a halo, where κ

is a free parameter defining the scale of the effective slope. Through experimentation, we

found that the local slope at kR with κ close to 1 (see Table 3.1 for the exact value) is a

suitable estimate of the effective n for our purposes. The right panel of Figure 3.3 shows the

resulting n(ν, z) for the redshifts and peak heights considered in this study. At higher z, a

fixed ν corresponds to smaller halos, smaller scales, and thus steeper slopes.

We are now in a position to test whether the fitting model of Equation (3.2) works for

ΛCDM as well as for the power-law cosmologies. In particular, we seek a set of best–fit values

of the six parameters in Equation (3.2), as well as a best-fit value of κ, which lead to a good

fit to the simulated c–ν relations in the power-law cosmologies, our fiducial cosmology, and

the Planck, High-σ8 and High-Ωm cosmologies. We estimate these best-fit parameters by

performing a global least-squares fit over the simulation results for all cosmologies, masses,

and redshifts. We assign the ΛCDM cosmologies a weight five times larger than that of

the power-law cosmologies because we want to achieve the highest accuracy for the ΛCDM

models. As a result, our model matches the ΛCDM cosmologies to better than ≈ 5% at

all redshifts and masses where the c–ν relation is determined reliably, while it matches the

power-law cosmologies to better than ≈ 15%. Detailed comparisons between our model

and simulation data are shown in Figure 3.4 for the fiducial cosmology, Figure 3.5 for the
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Figure 3.5: Same as Figure 3.4, but for the Planck, High-σ8, and High-Ωm cosmologies.
Given that the c–ν and c–M relations for these cosmologies are relatively similar to those in
the Bolshoi cosmology, only the relative differences between our model and the simulation
results are shown. Our model describes the relations to <∼ 10% accuracy. See text for a
detailed discussion.

Planck, High-σ8, and High-Ωm cosmologies, and Figure 3.6 for the self-similar cosmologies.

The best-fit parameters for the mean and median c–ν relations are listed in Table 3.1. Our

model natively predicts c200c, and so Figures 3.4–3.6 show comparisons in this mass defini-

tion. However, the c200c predictions can be converted to other mass definitions assuming a

particular form of the density profile, as discussed in Chapter 3.4.

Figure 3.4 shows that our model naturally captures the shape of the c–ν and c–M relations

in the ΛCDM cosmology at high redshifts, namely the decreasing minimum concentration

and the progressively more positively sloped relations at high ν and M . We note that

the slopes at low and high ν, α and β, are constant with redshift. However, because the

simulations probe different ranges of ν at different redshifts, the slope of the relation appears

to evolve.

The top panel of Figure 3.5 shows the residuals between our model and the c–ν relations
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Figure 3.6: Same as Figure 3.4, but for the self-similar cosmologies. These models received a
lower weight in the parameter fit as they are deemed less important than the more realistic
ΛCDM cosmology, and our model thus fits them to ∼ 15% accuracy rather than the ∼ 5%
accuracy achieved for ΛCDM.

in the Planck cosmology. At fixed mass, the Planck concentrations are ≈ 15% higher than

those in our fiducial cosmology, in agreement with the results of Dutton & Macciò (2014).

This shift is mostly caused by the higher values of Ωm and σ8 (Dooley et al. 2014). At z = 0,

our model fits the Planck cosmology simulation results very well, whereas it underestimates

the Planck concentrations at z > 0 by ≈ 5–10%, within the statistical accuracy of our

model. Similarly, our model fits the High-σ8 and High-Ωm c–ν relations reasonably well.

Those relations are also ≈ 10% higher than in our fiducial cosmology. At higher z, the

simulation data seem to show a small ≈ 5% residual excess over our model, again within the

uncertainty of the model and our simulation results.

Finally, Figure 3.6 shows a comparison of our model predictions and the c–ν relations for

the self-similar cosmologies. Due to the lower weight given to these models in our parameter

fit, the agreement is somewhat worse than for the ΛCDM cosmologies, about 15% for the
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steeper slopes. In particular, we note that the self-similar models prefer a steeper c–ν relation

at low ν, i.e. a larger value of α. Such discrepancies could of course be fixed at the expense of

more free parameters. However, given that self-similar models are only of academic interest,

and that the exact values of concentration can vary by at least ≈ 10–15% due to fitting

methods, binning, and other factors, the achieved accuracy is more than sufficient.

3.3 Comparison with Previous Models, Simulations, and

Observations

In the previous chapter, we showed that our analytical model correctly describes our sim-

ulation results at all masses, redshifts, and cosmologies. In this chapter, we expand such

tests: we extrapolate our model to micro-halos at high redshift and compare our results

with those of previous numerical studies and concentration models previously proposed in

the literature. Finally, we compare our results with current observational estimates of halo

concentrations on cluster mass scales.

3.3.1 Model Predictions for High-redshift Micro-halos

The concentration model presented above was calibrated using simulation results for rela-

tively massive halos expected to host galaxies. However, it is interesting to test whether

the model correctly extrapolates to simulation results outside this regime. For example,

the c–M relation is often modeled with power-law functions that extrapolate to very high

concentrations for the smallest, Earth-mass halos. In contrast, power-law functions in c–ν

space lead to a flattening of the c–M relation at low masses, thereby predicting much smaller

concentrations in the low-mass regime (see, e.g., Figure 10 in Ludlow et al. 2014).

In Figure 3.7 we compare the concentrations measured in simulations of micro-halos

reported by various groups, as well as the predictions of our model. The halo masses range
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Figure 3.7: Concentrations of micro-mass halos at high redshifts measured in cosmological
simulations and predicted by different models. The solid blue line shows the prediction
of our model at z = 30 for our fiducial ΛCDM cosmology. At such high redshift, the
size scales involved are small, kR is large, and the power spectrum approaches a constant
slope of about −2.9 (Figure 3.3). For some of the simulations, the initial power spectrum
had an explicit cutoff at the free-streaming scale and is thus not well described by the
Eisenstein & Hu (1998) approximation. Near this cutoff, the effective slope could easily
be as steep as n = −3.5 (the model prediction for this slope is shown in the dashed blue
line). The simulation results from Diemand et al. 2005 refer to their quoted concentrations
for two individual halos (triangles). The results of Anderhalden & Diemand 2013 (squares)
correspond to their simulation without a power spectrum cutoff. The shaded area around
the Ishiyama 2014 results (circles) indicates the 33% and 66% range. The predictions of
the Bullock et al. (2001), Zhao et al. (2009), and Prada et al. (2012) models at z = 30 are
plotted for comparison (gray lines).
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from 2×10−7h−1 M� to 10h−1 M�, up to 16 orders of magnitude smaller than the smallest

halos used to calibrate the model. In the three numerical studies we compare to, the density

profiles are fit with an extended NFW profile with a variable inner slope. In Anderhalden

& Diemand (2013) and Ishiyama (2014), a conversion to standard NFW concentration is

provided. The profile fitted to the halos in Diemand et al. (2005) has an inner slope of

α = −1.2. We convert the given concentration (c = 1.6) using the formula of Ricotti (2003),

cNFW = cα/(2−α), giving cNFW = 2. The results of the three different studies are consistent

with each other and show that micro-mass halos have low concentrations, 1 <∼ c <∼ 3, with

no discernible dependence on halo mass.

The solid blue line in Figure 3.7 shows the prediction of our model at z = 30 which

matches the simulation results reasonably well. At the very high redshift and very small

scales we are considering, the power spectrum slope approaches a nearly constant value

of −2.9 in the case of the fiducial cosmology (Figure 3.3). Thus, the prediction becomes

similar to predictions at fixed slope n, while the exact cosmology matters relatively little.

Diemand et al. (2005) state that the effective slope of their power spectrum near the cutoff

is about −3. As some of the simulations plotted in Figure 3.7 have a power spectrum with a

cutoff corresponding to the free streaming scale of dark matter particles, the effective slope

experienced by halos at the cutoff may be even steeper than −3. For illustration, the dashed

line in Figure 3.7 shows the predictions of our model for a fixed slope of −3.5 which leads

to even lower concentrations than our z = 30 prediction. Regardless of the exact slope, our

model predicts low concentrations, c < 3, across a wide range of masses, and a shallow, rising

c–ν relation, in excellent agreement with the simulation results. We have thus validated our

model across 22 orders of magnitude in mass, and from z = 0 to z ≈ 30. We discuss the

other models shown in Figure 3.7 in Chapter 3.3.3.
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3.3.2 Comparison with Previous Numerical Calibrations

Our simulation results generally agree with the recent study of Dutton & Macciò (2014,

compare, for example, their Figure 14 and our Figure 3.4). They conclude that concentra-

tions in the Planck cosmology are ≈ 20% larger than in the WMAP5 cosmology, which is

consistent with our findings. The comparison in the bottom right panel of Figure 3.8 shows a

good overall agreement of Dutton & Macciò (2014) and the predictions of our model for the

same Planck cosmology. Considering that the results were obtained using different N -body

codes, halo finders, and were subject to different resolution limits, the good agreement is

reassuring.

However, there are also important differences: at higher z, the power-law fits become

progressively poorer descriptions of the shape of the c–ν relation over the mass range probed.

Our model approaches a power-law in c–ν space at low ν, and has an upturn at high ν. In

contrast, a power-law in c–M space extrapolates to large concentrations at small masses,

and small concentrations at large masses. The high-z results in Chapter 3.3.1 highlight

the low-mass issue in particular. Many other studies have used power-law fits to the c–M

relations measured in simulations as a compact way to approximate their numerical results

(Jing 2000; Dolag et al. 2004; Neto et al. 2007; Duffy et al. 2008; Gao et al. 2008; Macciò

et al. 2008; Klypin et al. 2011; Muñoz-Cuartas et al. 2011). These calibrations will likewise

be inaccurate at low and high masses.

For this reason, both Prada et al. (2012) and Ludlow et al. (2014) have recently advocated

modeling the c–ν relation rather than the c–M relation, and Bhattacharya et al. (2013)

have approximated the concentrations in their simulations using power-law fits in c–ν space

(bottom center panel of Figure 3.8). Their fits were calibrated for a wide range of cosmologies,

but only for high masses, M > 2× 1012 h−1 M�, and clearly cannot be extrapolated to low

masses because the c–ν relation significantly steepens at low ν. Overall, our results clearly

show that a power-law is not a good approximation to the c–ν relation over a wide range of
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Figure 3.8: Comparison of our model (dashed lines) with models from the literature (solid
lines), namely the models of Bullock et al. (2001), Zhao et al. (2009) and Ludlow et al.
(2014) in which concentration is based on the MAH of halos, the c–ν models of Prada
et al. (2012) and Bhattacharya et al. (2013), and the power-law fitting function of Dutton
& Macciò (2014). Some of these models were calibrated for cosmologies different from our
fiducial cosmology. In those cases, the dashed lines show the predictions of our model for
the respective cosmology. The Bhattacharya et al. (2013) model is plotted only in the mass
range where it was calibrated.
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ν. Furthermore, Bhattacharya et al. (2013) find much stronger deviations of the c–ν relation

from universality than we do. For example, they observe a ≈ 30% difference in normalization

between z = 0 and z = 2 for massive halos (their Figure 2). This difference leads to a strong

redshift evolution of their fitting function, in disagreement with both our model and the

results of Dutton & Macciò (2014). The reason for this discrepancy is not entirely clear, but

we note that it arises primarily at z > 1 (Figure 3.8).

We measure the 68% rms scatter in log10 c200c around the median concentration and find

it to be ≈ 0.16 dex, independent of redshift, peak height, or mass definition. This value is in

excellent agreement with various previous measurements (e.g., Bullock et al. 2001; Wechsler

et al. 2002; Duffy et al. 2008; Bhattacharya et al. 2013). Some authors have measured

lower values of ≈ 0.10 dex (Macciò et al. 2008; Dutton & Macciò 2014), but for samples

that included only relaxed objects (Bhattacharya et al. 2013). We note that we have not

corrected the scatter for any errors in the concentration measurements, i.e., uncertainties in

the best-fit parameters of the NFW profile. The measured scatter is thus an upper limit on

the true scatter in concentration.

3.3.3 Comparison with Previous Concentration Models

While the power-law fits discussed in the previous chapter allow a simple and compact

parameterization of simulation results, they extrapolate inaccurately outside the range of

redshifts, masses, and cosmologies over which they were calibrated. A number of authors

have thus proposed more physically motivated models of concentration, calibrated using

simulations. Most of these models have used the tight coupling between concentrations and

halo MAHs (Navarro et al. 1997; Bullock et al. 2001; Wechsler et al. 2002; Zhao et al. 2003b;

Giocoli et al. 2012). Here we compare our results in detail to four such models (Bullock et al.

2001; Eke et al. 2001; Zhao et al. 2009; Ludlow et al. 2014), and to the empirical c–ν model

of Prada et al. (2012). We consider both ΛCDM (Figure 3.8) and self-similar cosmologies
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(Figure 3.9). While the latter models do not represent the real universe, they provide an

interesting test of the universality of any model that relies on P (k) for its predictions, and

thus any model that works with σ(R), M∗, or ν.

The model of Bullock et al. (2001, we use the improvements to this model proposed by

Macciò et al. 2008) predicts a simple scaling with redshift, cvir ∝ a/ac, where ac is the

expansion factor at the epoch when the halo assembled a certain fraction of its mass. The

comparison with our model shows that this model captures the c–M relation at z = 0 well,

and also predicts the correct redshift evolution at low ν where it was calibrated. However, the

model does not reproduce the upturn or even a flattening at high ν and z > 0, which is clearly

visible in our results and other recent studies. Similarly, for self-similar cosmologies the

Bullock et al. (2001) model matches our simulation results at low ν but fails at high ν. Thus,

although Figure 3.7 shows that the Bullock et al. (2001) model predicts the concentrations

of micro-mass halos at z = 30 correctly, this agreement may be coincidental, as the model

does not match halo concentrations at similar peak heights at z <∼ 6. For example, at ν >∼ 2

and z = 6 (corresponding to M > 109 M�), the prediction of the Bullock et al. (2001) model

does not match our results (see Figure 3.8).

Eke et al. (2001) expanded on the models of Navarro et al. (1997) and Bullock et al. (2001)

by adding an explicit dependence on the power spectrum slope via a term proportional to

d log σ(M) /d logM , and a similar dependence is already implicit in the Bullock et al. (2001)

model. The two main differences between these models and ours are that instead of the slope

of σ(M) we consider the slope of P (k), and that in their models the power spectrum slope

influences concentration through the formation redshift of a halo. As a result, n significantly

changes the normalization of the c–M relation, but its shape varies relatively little with n. In

contrast, in our model both the normalization and shape of the relation explicitly depend on

n (Figure 3.8). These differences are particularly apparent in the predictions for self-similar

cosmologies (Figure 3.9). Both the Bullock et al. (2001) and Eke et al. (2001) models predict
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Figure 3.9: Comparison of our model for self-similar cosmologies (dashed lines) with models
from the literature (solid lines), namely the models of Bullock et al. (2001), Eke et al. (2001),
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a power-law shape, while the actual c–ν relation at high ν flattens and even turns up. In

addition, the model of Eke et al. (2001) predicts a stronger dependence of the normalization

on n than we observe in our scale-free simulations.

In the model of Zhao et al. (2009), concentration is a function of the time since a halo

accumulated 4% of its mass, with a floor of cvir ≥ 4 (corresponding to c200c
>∼ 3.8). Thus,

all halos in the fast accretion regime (i.e., during their early evolution) have concentrations

around 4, whereas their concentration increases later in the slow accretion regime. While

our models agree fairly well at low z, they diverge at higher z where the Zhao et al. (2009)

model predicts a mass-independent cvir ≈ 4. Our results (see also Dutton & Macciò 2014)

show that there is no well-defined floor in the concentration values: halos that form from

the collapse of perturbations with a steep power spectrum have concentrations much smaller

than the floor value adopted by Zhao et al. (2009). A similar picture emerges for the self-

similar cosmologies, where the model predicts virtually no n-dependence at high ν, and is

thus incompatible with our simulation results.

Ludlow et al. (2014) have recently argued that concentration does not only reflect the

formation epoch of a halo (as previously advocated by Wechsler et al. 2002; Zhao et al.

2003b), but that the entire density profile of a halo is a one-to-one reflection of the critical

density of the universe when different parts of the halo were assembled. Based on this insight,

as well as an analytic prescription for the assembly history of halos, they propose a c–ν model

that agrees with ours relatively well at z = 0. At high redshifts, however, their model does

not match our simulation results because they assume the c–ν relation to be constant across

redshifts. Their model also does not exhibit the upturn at high masses that is apparent in

our simulations (see also Prada et al. 2012; Dutton & Macciò 2014), presumably because

they consider only relaxed halos.

Finally, we compare our model to that of Prada et al. (2012) which, unlike the models

discussed so far, is not based on the formation time of halos. Instead, they propose a fitting
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formula with 13 free parameters to the c–ν relation in their ΛCDM simulations and its

redshift dependence. The bottom left panel of Figure 3.8 shows large differences between

our models, which probably arise because we estimate concentrations from direct fits to

the mass profile while Prada et al. (2012) derive them from the maximum circular velocity,

vmax, of halos and assume the NFW form. They also bin concentrations in vmax rather than

in mass. Both choices have been shown to significantly affect the resulting c–M relation

(Meneghetti & Rasia 2013). In addition to the large differences in normalization and slope,

the upturn at high ν and high z is weaker in our simulations. However, the main difference

between our models is in the physical mechanism invoked to explain the redshift evolution

of the c–ν relation. While Prada et al. (2012) make an empirical redshift correction based

on the linear growth factor, our model explains the non-universality using n as a second

parameter in addition to ν. For the self-similar cosmologies (Figure 3.9), the Prada et al.

(2012) model predicts no dependence on n, and thus fails to reproduce our simulation results.

Sánchez-Conde & Prada (2014) recently investigated the predictions of the Prada et al.

(2012) model for micro-halos, and concluded that the model is in good agreement with

simulation results in c–M space, in contradiction with the comparison shown in our Figure

3.7. However, their conclusion appears to be based on the top panel of their Figure 1 in

which high-z results for c200c are rescaled to z = 0 using the c ∝ a scaling of Bullock et al.

(2001). This scaling was derived for cvir and is inaccurate for c200c (see Chapter 3.5). When

this correction is not applied (bottom panel of their Figure 1), the model of Prada et al.

(2012) does indeed predict concentrations a factor of two higher than the simulation results,

consistent with our findings.

In conclusion, none of the universal models previously proposed in the literature can

explain our simulation results over the full range of masses and redshifts probed. Particularly,

at high masses and high redshifts the assumptions of many models are too simplistic, e.g.,

a concentration floor at high masses, or no flattening of the relation at all. Recently, there
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has been significant debate regarding the high-ν behavior of the c–ν relation (Prada et al.

2012; Ludlow et al. 2012; Bhattacharya et al. 2013; Meneghetti & Rasia 2013; Ludlow et al.

2014). In particular, the exponential upturn detected by Prada et al. (2012) was traced to

their binning scheme and the vmax approximation (Meneghetti & Rasia 2013). The largest

halos are often the least well fit by NFW profiles (Duffy et al. 2008, Chapter 4.1), leading

to the greatest differences between scale radii estimated using the vmax approximation and

those derived from a profile fit. Furthermore, Ludlow et al. (2012) showed that the upturn

is due to unrelaxed halos. These differences seemed to explain why the model of Prada et al.

(2012) differs from all other models, particularly at the high-ν end.

Nevertheless, we also find strong evidence for an upturn at high ν, i.e. fits of Equation

(3.2) with β ≤ 0 result in a very poor match with our simulated concentrations. While there

is no clear evidence for an upturn in the low-z data for ΛCDM cosmologies (Figure 3.1), the

high-z relations clearly take on a positive slope. The same is true for the low-n self-similar

cosmologies. Ludlow et al. (2012) showed that the upturn can be removed, but only if a

large fraction of all halos is excluded as unrelaxed, particularly at high z (see their Table 1).

Since we choose to consider the full halo sample, our model does predict an upturn. This

feature is particularly salient in regimes where halos form in regions with a steep slope of

the power spectrum, which leads to halos of different masses forming at a similar time, and

thus a higher fraction of unrelaxed halos. While the NFW profile does not fit those objects

as well as slowly accreting objects (Chapter 4.2), the 68% scatter in concentration does not

increase at high mass, indicating that the concentrations in this regime are measured with

similar accuracy as for relaxed objects.

3.3.4 Comparison with Observations

Measuring halo concentrations in observed systems is challenging as it requires accurate

measurements of the dark matter density profile. The most accurate measurements have
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Figure 3.10: Comparison of our model predictions with the concentration measurements for
clusters in the CLASH sample, derived using the weak lensing measurement of Umetsu et al.
(2014, for all CLASH clusters, red point) and the strong and weak lensing measurements
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54



been derived from either X-ray or lensing observations of clusters of galaxies, but the results

initially appeared to be in tension with simulations. For example, the X-ray results of

Schmidt & Allen (2007) and Ettori et al. (2010) seemed to indicate a much steeper slope of

the c–M relation than measured in simulations. However, Rasia et al. (2013) pointed out

that there are many factors that can lead to such disagreement, for example baryonic effects,

deviations from the assumption of hydrostatic equilibrium, or the X-ray selection function.

Similarly, lensing observations seemed to indicate an “overconcentration” problem, with

low-mass clusters having much higher concentrations than predicted by simulations, and

thus a steeper overall c–M relation than expected (e.g., Oguri et al. 2012; Wiesner et al.

2012). Recently, however, Auger et al. (2013) pointed out that the observed steepness of

the c–M relation is an artifact of neglecting the covariance between the errors in mass and

concentration.

A good agreement between observations and simulations was recently reported for the

results of the CLASH cluster lensing survey (Umetsu et al. 2014; Merten et al. 2014). When

the X-ray selection function is taken into account, the c–M relation measured in their simu-

lations (Meneghetti et al. 2014) matches the observations very well. The CLASH simulations

were non-radiative and thus do not reproduce important baryonic effects which can change

the total mass profile of halos (e.g., Rudd et al. 2008). Furthermore, the translation between

N -body and hydrodynamic simulations is more complicated than a simple shift in the c–M

relation (Velliscig et al. 2014). Nevertheless, the good agreement between the CLASH obser-

vations and simulations indicates that we can attempt at least a rough comparison between

the CLASH results and our model, even though our model (as well as the models from the

literature discussed in the previous chapters) are based on pure dark matter simulations.

In any case, the uncertainties in the observational data are still significantly larger than

baryonic effects (Meneghetti et al. 2014).

Figure 3.10 shows our model (blue line), evaluated at the mean redshift of the CLASH
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clusters, z = 0.4. In their weak-lensing analysis of 16 X-ray selected CLASH clusters, Umetsu

et al. (2014) find a mean concentration of c200c = 4.01+0.35
−0.32 at an effective halo mass of

9.38+0.70
−0.63 × 1014 h−1 M� and a mean redshift of z = 0.35 (red point), in good agreement

with our model which predicts c200c = 3.73, within 1σ of the measured result. Merten et al.

(2014) analyze both the weak and strong lensing signals of 18 CLASH clusters, and find

masses and concentrations for each individual cluster (blue points). For the comparison in

the bottom panel of Figure 3.10, our model was evaluated at the redshift of each individual

cluster. The Merten et al. (2014) concentrations are distributed around c200c = 3.7 with a

weak mass dependence, in excellent agreement with our model.

In conclusion, within the current accuracy of lensing observations, there is no evidence

for strong, >∼ 20%, baryonic effects on the concentrations of clusters. Note, however, that

the scatter of the individual cluster concentrations around the mean is about 0.08 dex,

significantly smaller than what we measure for simulated halos. However, as we noted

previously, our scatter estimate includes errors in the concentration measurement and is

thus an upper limit of the true scatter. Detailed comparisons of the predicted and observed

scatter will demand larger, mass-selected samples and more careful estimates of the fit errors

in simulation analyses.

3.4 Conversion to other mass definitions

The model proposed in Chapter 3.2 is based on the c200c definition of concentration, and

makes no direct prediction for the c–M relation in other mass definitions. A conversion to

other definitions can be performed a posteriori, but necessarily assumes a particular form of

the density profile as a function of M200c and c200c. If this functional form does not match

the true density profile of halos, the c–M relations predicted for other mass definitions

will deviate from those found in simulations. Figure 3.11 shows the accuracy of the c–ν

relation for c500c, cvir, and c200m, as well as c200c for comparison. The conversion from c200c
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was performed assuming NFW density profiles. It is clear that the accuracy in the mass

definitions other than c200c is slightly degraded, though only in particular mass and redshift

regimes.

In the case of c500c, the difference with simulation results is caused by a systematic

deviation of the NFW approximation from the real density profiles. Namely, at the highest

peak heights, the profiles are steeper than predicted by the NFW profile, leading to a slightly

underestimated R500c (Figure 4.1). The accuracy of the prediction can be improved to

<∼ 10% when using the profile form suggested in Chapter 4.3.

For cvir and c200m, deviations appear only at low redshifts because R200m, Rvir, and

R200c are almost the same radius at high redshift. At ν <∼ 2 (roughly 1014 h−1 M� at

z = 0), cvir is overestimated by ∼ 5% and c200c by ∼ 10%. At the highest peak heights, the

differences increase to ∼ 15% and ∼ 20% for cvir and c200c, respectively. While using the

profile of Chapter 4.3 improves the estimates by a few percent, the bulk of the effect is not

caused by a deviation of the NFW profile from the true median profile. Instead, it appears

that even if an accurate description of the mean or median profile is used in the conversion,

the mean or median concentrations are biased high. Given the complex distributions of c

(Figure 2.6), we have no reason to expect that a conversion based on the mean or median

profiles should give perfect results.

In conclusion, the conversion of our model to mass definitions other than c200c introduces

slight inaccuracies, but the concentrations still agree with simulation results to ∼ 10%. The

only exception are definitions with large outer radii, such as c200m, at high masses and low

redshifts. In this particular regime, the error can increase to ∼ 20%.
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as predicted by the Zhao et al. (2009) model. For the same physical halo, the green and light
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by Bullock et al. (2001), c ∝ a (dashed line), was designed specifically for cvir and is not
a good fit to the evolution of the other concentration definitions. Furthermore, the scaling
works only after the formation redshift, and can thus not be extrapolated to arbitrarily high
z.
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3.5 On the Redshift Evolution of Concentration in Individual

Halos

In this chapter, we briefly comment on the evolution of the concentrations of individual halos.

Bullock et al. (2001, see also Wechsler et al. 2002) showed that halo concentrations evolve

as cvir ∝ a if they are defined using the radius enclosing a variable, “virial” overdensity.

However, this scaling is sometimes used in the literature to describe other definitions of

concentration. For example, a number of authors have used the scaling to translate very

high redshift concentrations to z = 0 (Anderhalden & Diemand 2013; Sánchez-Conde &

Prada 2014; Ishiyama 2014).

Figure 3.12 demonstrates why the scaling is inappropriate for such applications. The

figure shows the evolution of cvir (solid dark blue line) for a hypothetical halo with Mvir =

1012 h−1 M� at z = 0, as predicted by the MAH model of Zhao et al. (2009). At each

redshift, we also compute c180m and c180c corresponding to the same physical density profile

(green and cyan lines). The evolutions of the different concentration definitions are quite

similar at high z, but diverge at z <∼ 2, where Ωm < 1, and thus ρc and ρm evolve differently.

The dashed blue line shows the cvir ∝ a scaling which is a good description of the evolution

of cvir, but only for cvir and only after the formation redshift. Thus, the scaling could be

applied only to the evolution of z = 30 micro-halos if they stopped growing and merging at

that redshift, which seems unlikely.

In Diemer et al. (2013b), we demonstrated that the evolution of the c–M relation at low

redshifts can almost entirely be explained by the pseudo-evolution of the outer halo radius,

related to the evolution of the reference density, as opposed to real physical growth. Once

halos enter the slow-accretion regime, their physical density profile, and thus their scale

radius, barely change. Due to the decreasing reference density (critical or mean density of

the universe), the virial radius, and thus concentration, grow. We checked that a simple

model of a fixed, pseudo-evolving halo density profile describes the low-redshift evolutions
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shown in Figure 3.12 quite well. This agreement leads to the conclusion that the cvir ∝ a

scaling just happens to reproduce the pseudo-evolution of Rvir.

Finally, we note a subtle secondary effect due to a combination of pseudo-evolution and

cosmology. The critical density, in physical units, depends on H0 and Ωm, and hence differs

between our cosmologies. Thus, for the same physical object, we measure a different R200c

and c200c. For example, the physical overdensity that corresponds to 200ρc at z = 0 in the

Bolshoi cosmology corresponds to 218ρc in the Planck cosmology. We have quantified this

effect and found it to change the c–ν relations by a few percent. The redshift dependence is

fairly complicated though, and we have chosen to ignore the issue.
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CHAPTER 4

RESULTS II: THE SHAPE OF THE OUTER DENSITY

PROFILE

In this chapter, we investigate the functional form of the density profiles of dark matter halos,

with particular attention to their (non-)universality with respect to mass (expressed as peak

height), redshift, and, for the first time, mass accretion rate. As we find that conventional

fitting formulae cannot account for some of the dependencies we detect, we propose a new

analytical model. These results were first presented in Diemer & Kravtsov (2014).

We note that, in this chapter, the peak height ν refers to νvir (see Chapter 1.2). This

definition corresponds to the largest radius where the scatter in the density profiles is still

relatively small, whereas scatter quickly increases at r >∼ Rvir (see Figure 4.1). For the same

reason, we use Rvir rather than R200m when we estimate the mass accretion rate between

two redshifts (see Chapter 4.2). We have verified that the choice of mass definition does not

qualitatively influence our results and conclusions.

4.1 Profiles as a Function of Peak Height and Redshift

Figure 4.1 shows the median density profiles at z = 0 of two halo samples representing

extremes of the range of halo peak heights, and the corresponding profiles of the logarithmic

slope, γ(r) ≡ d log ρ/d log r. The low-mass sample (left panels) corresponds to the peak

height range of 0.5 < ν < 0.7 (see Figure 1.1 for the respective mass range), while the

high-mass sample corresponds to ν > 3.5. We also show the interval containing 68% of the

individual profiles with a shaded band.

It is clear that the profiles of the two samples in Figure 4.1 are quite different. The

median profile of the low-ν sample has a slowly changing slope out to r >∼ Rvir and large

scatter around the flattening at larger radii. The high-ν sample, on the other hand, has a
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Figure 4.1: Median density profiles of low-mass (top left panel) and very massive (top
right panel) halos at z = 0. The shaded bands show the interval around the median that
contains 68% of the individual halo profiles in the corresponding ν bin. The plots include
somewhat smaller radii for the high-ν sample compared to the low-ν sample due to the
different resolution limits of the simulations from which the profiles were extracted. The
shapes of the high- and low-mass profiles are noticeably different: the slope of the high-
ν profile steepens sharply at r >∼ 0.5Rvir, while the profile of the low-ν sample changes
slope gradually until r ≈ 1.5Rvir, where the profiles of both samples flatten significantly.
The sharp steepening of the outer profile of the high-ν sample cannot be described by the
NFW or Einasto profiles, as is evident in the bottom panels. The bottom panels show
the logarithmic slope profile of the median density profiles in the top panels, as well as the
corresponding slope profiles for the best-fit NFW (dot-dashed) and Einasto (dashed) profiles.
To avoid crowding, we show the NFW and Einasto fits only in the bottom panels where the
differences can be seen more clearly. The vertical arrows indicate the position of various
radius definitions, evaluated for the median mass profile.
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Figure 4.2: Universality of the density profiles across redshifts. The top left panel shows
the redshift evolution of the median density profiles of the highest peak halos, ν > 3.5,
as a function of proper radius (the results for lower-ν halos are similar). The rest of the
panels show the same profiles as the top left panel, but rescaled by R200c, Rvir, and R200m,
with density rescaled correspondingly by ρc, ρvir, and ρm. The plots demonstrate that the
structure of halos of a given ν is nearly universal when rescaled by any R∆. However, they
also reveal that the inner structure of halos is most universal when radii and densities are
rescaled by R200c and ρc, while the outer profiles are most universal when rescaled by R200m
and ρm. See also Figure 4.3 where we show the slope profiles of the scaled profiles.
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sharply steepening profile at r >∼ 0.5Rvir with the slope changing from −2 to −4 over a range

of only ≈ 4 in radius, as can be seen in the slope profiles (bottom panels). For comparison,

the slope of an NFW profile is expected to change by only ≈ 0.6 over the same radial range

for typical concentrations. The slope profiles show that although the NFW and Einasto

profiles provide a reasonable description to the profiles of the low-ν sample out to r ≈ Rvir,

they fail to describe the rapid steepening of the slope in the high-ν sample. Clearly, the

functional form of the high-ν profiles differs from the fit at large radii, implying that the

outer density profiles of halos cannot be universally described by a single NFW or Einasto

profile. We note that these fitting functions were not designed to match profiles outside

r ≈ Rvir, but the deviations from the NFW and Einasto profiles in high-ν halos begin at

smaller radii, r ≈ 0.5Rvir (see also Meneghetti & Rasia 2013; Balmès et al. 2014).

We note that the profiles of both the low-ν and high-ν samples flatten to a slope of

≈ −1 at r >∼ 2Rvir, as the profile approaches the 2-halo term of the halo–matter correlation

function (see, e.g., Hayashi & White 2008). However, the scatter around the median profiles

is much larger for low-ν halos, even though such halos form earlier and are thus more relaxed

on average. The reason for the increased scatter is that some of the low-ν halos are located

in crowded environments near massive neighbors, while others are relatively isolated. High-ν

halos are massive and rare, and their environments are much more uniform.

Figure 4.1 shows the profiles of a given ν bin only at z = 0. We generally expect that

profiles of halos of a given ν are universal across redshifts, as long as the density and radii

are properly rescaled. However, it is not clear a priori what radii and characteristic densities

should be used for such rescaling, leading us to investigate several choices. The top left

panel of Figure 4.2 shows a sequence of profiles of the highest-ν bin at different redshifts in

proper units (physical density and radius). We stress that we compare the median profiles of

halos of similar peak heights, not the profiles of progenitor and descendant halos. The peak

height bin ν > 3.5 corresponds to halos of very different mass at different redshifts, from
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Figure 4.3: Slope profiles of three ν bins at different redshifts. The top panels refer to the
ν > 3.5 sample shown in Figure 4.2. For the lower-ν bins (center and bottom panels), fewer
redshift bins are accessible with our simulations. In the left panels radii are rescaled by
R200m, in the right panels by R200c. The slope profiles confirm the results of Figure 4.2
that the outer profiles at r >∼ R200m are most universal when radii are rescaled by R200m,
with the steepest slope reached at r ≈ R200m regardless of redshift. The inner profiles at
r <∼ 0.6R200c, however, are most universal when rescaled by R200c. We note that at z >∼ 2
the difference between R200m and R200c becomes negligible.
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Mvir > 1.4× 1015 h−1 M� at z = 0 to Mvir > 1.5× 1011 h−1 M� at z = 6 (see Figure 1.1).

Their virial radii span over two orders of magnitude over this redshift interval. The other

panels of Figure 4.2 show the same profiles, but rescaled by R200c, Rvir, and R200m, with the

densities rescaled correspondingly by ρc, ρvir, and ρm. These panels demonstrate that the

structure of halos of a given ν is nearly universal when rescaled by any R∆ in a reasonable

range. However, they also reveal that the inner structure of halos is most universal when

radii and densities are rescaled by ρc and R200c, while the outer profiles are most universal

when rescaled by R200m and ρm. A scaling with ρvir and Rvir produces intermediate results.

The degree of universality can be assessed more robustly in profiles of the logarithmic

slope, which show particularly clearly at which radii the profiles undergo rapid changes in

slope. Figure 4.3 shows the slope profiles for three ν bins, rescaled by R200m (left column) and

R200c (right column). The sharp steepening of the profile and subsequent sharp flattening

occur at the same radii in units of R200m, and the radius of the steepest slope occurs at

≈ 1 − 1.2R200m for all ν and redshifts. At r < R200m, however, the slopes of the profiles

at a given r/R200m vary for different ν and z. The opposite is true when the densities and

radii are rescaled by ρc and R200c. In particular, at r <∼ 0.8− 1R200c, the slopes at a given

r/R200c agree for halos of the same ν at different z. Although the shapes of the low-ν and

high-ν profiles are different, with the former exhibiting a slower change of slope, they exhibit

a similarly remarkable degree of uniformity at r > R200m when rescaled by R200m, and at

r < R200c when rescaled by R200c.

Our results thus lead to the conclusion that the inner, most relaxed regions of halo profiles

are universal in units of r/R200c, while the outer profiles are universal in units of r/R200m.

This conclusion would of course hold for any radius definition using a fixed overdensity

relative to the mean and critical density within a reasonable range of overdensities. As a

result, concentration is most universal in units of c200c (Chapter 3.1). On the other hand,

for modeling the transition radius between the 1-halo and 2-halo terms in the halo model,
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the use of radii tied to the mean density may be preferable. Given that we focus on the outer

profiles in this study, we will scale the profiles at different redshifts using ρm and R200m in

the subsequent analyses. We discuss the physical origin of the universality of the profiles in

Chapter 6.1.

Finally, we investigate whether the shape of the profiles follows a continuous function

of peak height, as indicated by the trend with ν in Figure 4.3. Figure 4.4 shows the den-

sity profiles (in units of ρ(r)r2 to minimize the dynamic range) and corresponding slope

profiles for a range of peak heights spanning five orders of magnitude in mass. As the

peak height increases, the slope of the profiles becomes shallower at r <∼ 0.5Rvir, but steeper

at 0.5 <∼ r <∼ 1.5R200m. At r >∼ 1.5R200m the profiles are remarkably universal for halos of

different ν when rescaled using R200m.

Although the shape of the median profiles follows a continuous trend with ν, the scatter

of the individual profiles around the median of each ν sample is substantial. Figure 4.5

shows the distribution of slopes at R200m for three of the ν bins shown in Figure 4.4. The

distributions are quite broad, with particularly long tails toward shallower, or even positive,

slopes. On the other hand, the tails toward very steep slopes indicate that the steepening

demonstrated in Figure 4.4 can actually be even more pronounced for individual halos, as

many halos have slopes significantly steeper than γ ≈ −4. We have verified this observation

by examining individual profiles. The radii of the steepest slope, however, do not exactly

overlap, and are thus smoothed out in the median profiles.

Figure 4.5 also demonstrates why we chose to investigate the median rather than mean

profiles in this chapter. The distributions of slopes are not symmetric and have long tails

that strongly influence the mean, but not the median. Furthermore, we find that the mean

and median of the slope distribution can differ from the slope of the mean and median profile.

We will return to this issue when considering individual halo profiles in Chapter 6.3.

A similarly large scatter in the outer profiles was reported by Prada et al. (2006), who

68



102

(r
/R

20
0m

)2
ρ
/ρ

m

ν > 3.5
3.0 < ν < 3.5
2.5 < ν < 3.0
2.0 < ν < 2.5
1.5 < ν < 2.0
1.0 < ν < 1.5
0.7 < ν < 1.0
0.5 < ν < 0.7

0.1 0.5 1 5

r/R200m

−4

−3

−2

−1

γ
=
d

lo
g
ρ
/d

lo
g
r

Figure 4.4: Median density profiles (top panel) and their logarithmic slopes (bottom panel)
for various bins in peak height, ν, at z = 0. For clarity, the density is plotted in units of ρr2,
which makes it easier to see differences between profiles. The ν bins range from small peaks
(ν = 0.5, Mvir = 1.4 × 1010 h−1 M�) to rare peaks (ν > 3.5, Mvir > 1.4 × 1015 h−1 M�).
The steepest slope of the profiles increases with peak height, but all profiles of samples with
ν > 1 reach slopes steeper than −3.
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Figure 4.5: Distribution of the logarithmic slope γ ≡ d log ρ/d log r at R200m, for three bins
in peak height. The slope is measured for about 3000 individual halo profiles in the lower-ν
bins, and about 220 in the highest-ν bin. The slopes span a wide range: some halos have
outer slopes as steep as −6 or −7, while other halos have flat or even positive slopes. The
latter halos likely have nearby massive neighbors, while the former halos accrete mass at a
high rate (Chapter 4.2).

also showed that the mean outer profile depends on how subhalos are excluded from the

sample. For example, if one uses a larger radius to define the halo boundary and define

subhalos, this lowers the averaged outer profile of the isolated halo sample because it lowers

the fraction of halos located right next to a larger, isolated halo.

4.2 Profiles as a Function of Mass Accretion Rate

In the previous chapter, we showed that the outer profiles of halos exhibit systematic vari-

ations, with their logarithmic slope at r ≈ 0.5 − 1R200m becoming steeper with increasing

peak height, independent of redshift. To understand the origin of this trend we must seek

the corresponding physical property of halos that shapes the profiles. One of the most salient

differences between halos of different peak height is the degree to which they dominate their

environment, and are capable of accreting matter. To this end, we examine the median
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Figure 4.6: Dependence of the slope profiles on the mass accretion rate and occurrence of
a recent major merger. In both panels, the red line shows the median density profile of all
halos in the peak height range 1.5 < ν < 2 at z = 0, previously shown in Figure 4.4. In the
left panel, the sample is further split by accretion rate Γ as defined in Equation (4.1). Halos
with high mass accretion rates exhibit very different median profiles compared to their slowly
accreting counterparts. The right panel shows the same samples, but with the additional
condition that the halos have not undergone a major merger since z = 0.5. The profiles are
very similar to those in the left panel, which demonstrates that systematic deviations in the
shape of the outer profile correlate with the overall mass accretion rate rather than a sharp
increase of mass due to a recent major merger.
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Figure 4.7: Mean mass accretion rate, Γ, as a function of peak height, ν, at z = 0. The
shaded contour indicates the uncertainty on the mean, whereas the dashed lines show the
68% interval. The median Γ is slightly lower than the mean at all ν. The dependence of Γ
on ν explains why high-ν halo samples have similar profiles as samples selected by a high
accretion rate (Figures 4.4 and 4.6). We note that Γ as defined here is larger than the
instantaneous mass accretion rate, i.e., the limit d log(a)→ 0 (McBride et al. 2009; Fakhouri
et al. 2010).

profiles of halos binned by their mass accretion rate, which we define as

Γ ≡ ∆ log(Mvir)/∆ log(a), (4.1)

using the masses of the main progenitor at z = 0.5 and its descendant at z = 0. At higher

redshifts, we always use the next-higher redshift bin, i.e. z = 1 to 0.5 for Γ at z = 0.5 and so

on. This choice is somewhat arbitrary, but corresponds reasonably closely to the expected

crossing time through the full extent of the halo, 2R (at z = 0, ∆z corresponds to about 5

Gyr whereas the crossing time is about 4 Gyr).

We note that halo masses change both due to actual physical accretion and due to changes

of the reference density with respect to which the halo radius is defined. The accretion rate

Γ is thus the sum of the real physical accretion and the so-called pseudo-evolution of mass

(Diemer et al. 2013b). However, for our current purposes we are interested not in the absolute
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value of the accretion rate but in its relative differences between halos. The contribution

to Γ due to pseudo-evolution is similar for all halos independent of mass, meaning that a

higher Γ still implies a higher rate of physical accretion. Thus, the simple definition of Γ in

Equation (4.1) is sufficient for our purposes. We have verified that using an estimate of the

physical accretion (based on the minimum estimator of pseudo-evolution defined in Diemer

et al. 2013b) leads to qualitatively similar results.

The top panel of Figure 4.6 shows the median profile of the 1.5 < ν < 2 halo sample

at z = 0. This sample is further split by the accretion rate of halos, Γ, as indicated in the

legend. The figure shows a strikingly clear correlation between mass accretion rate and the

steepness of the median outer profile: rapidly accreting halos exhibit steepest slopes as steep

as those observed in the highest-ν bin in Figure 4.4, whereas slowly accreting halos reach

slopes comparable to those of the median profile of the overall ν sample. We can also see that

the radius at which the steepest slope is reached decreases with increasing accretion rate,

although the variation occurs in a rather narrow range around R200m. These differences

demonstrate that the median profiles for a given range of ν are not representative of all

halos in that range. Instead, the outer profiles depend on the mass accretion rate. The

correlation of the profile shape with ν is secondary (as explicitly shown in Figure 4.9) and

arises because higher-ν halos tend to dominate their environment and thus generally have

larger mass accretion rates, (Figure 4.7).

Furthermore, the right panel of Figure 4.6 shows the same halo samples as the left panel

but excluding halos that underwent a major merger after z = 0.5. We have checked that

excluding only major mergers after z = 0.25 leads to very similar results. A major merger

here is defined as a merger of halos with mass ratio larger than 0.3. It is clear that the

profiles in the two panels are very similar. In fact, the profiles of halos without major

mergers reach somewhat steeper slopes at r ≈ R200m, which may be due to variations in

the outer profiles produced by mergers that smooth out features in the median profile. The

73



0.1 0.5 1 5

r/R200m

−0.4

−0.2

0.0

0.2

0.4

v r
/v

20
0m

ν > 3.5
3.0 < ν < 3.5
2.5 < ν < 3.0
2.0 < ν < 2.5
1.5 < ν < 2.0
1.0 < ν < 1.5
0.7 < ν < 1.0
0.5 < ν < 0.7

0.1 0.5 1 5

r/R200m

−3

−2

−1

0

1

2

3

d
(v
r/
v 2

00
m

)
/
d
(r
/R

2
0
0
m

)

R
5
0
0
c

R
2
0
0
c

R
v
ir

R
2
0
0
m

0.1 0.5 1 5

r/R200m

−0.4

−0.2

0.0

0.2

0.4

v r
/v

20
0m

0 < Γ < 1
1 < Γ < 2
2 < Γ < 3
Γ > 3
1.5 < ν < 2

0.1 0.5 1 5

r/R200m

−3

−2

−1

0

1

2

3

d
(v
r/
v 2

00
m

)
/
d
(r
/R

2
0
0
m

)

R
5
0
0
c

R
2
0
0
c

R
v
ir

R
2
0
0
m

Figure 4.8: Median radial velocity profiles of halos. Left panel: profiles of the same ν bins
as in Figure 4.4, at z = 0. As expected, the high-ν bins have much higher infall velocities,
even when rescaled by their v200m. Right panel: halos from the 1.5 < ν < 2 bin, split
according to their accretion rate as in the top panel of Figure 4.6, with the red line showing
the median profile of the entire 1.5 < ν < 2.0 sample. The radius where the infall velocity is
most negative shows a similar evolution with Γ as the radius of the steepest slope in Figure
4.6.

similarity of the samples with and without major mergers implies that the primary factor in

defining the shape of the outer profiles is mass accretion rate, rather than major mergers.

In an additional experiment, we verified that selecting halos by the time of their last major

merger does not preferentially select profiles with steep outer slopes.

These results highlight an important point: significant growth of halos, in particular in

observational analyses of groups and clusters, is often identified with apparent disturbances,

such as asymmetries, substructure, or deviations from hydrostatic equilibrium. However,

real halos grow by a combination of major mergers and the accretion of many low-mass

halos. The latter mode of accretion actually dominates at most epochs. An object that

appears quite relaxed in its inner regions can thus still be in the process of accreting mass

at a high rate because the accretion of many small halos from different directions will not

produce strong disturbances typically associated with unrelaxed clusters, for example.
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Additional evidence for the connection between the mass accretion rate and the shape of

the outer density profiles is provided by the infall velocity profiles of halos. The left panel

of Figure 4.8 shows the median radial velocity profiles of the same ν bins as in Figure 4.4,

rescaled by v200m ≡ (GM200m/R200m)1/2. As could be expected, the high-ν halos have

much more negative (corresponding to infall) average radial velocities than low-ν halos, even

when rescaled to v200m. In fact, the lowest-ν bin appears to experience no average infall

in any radial shell (see also Diemand et al. 2007; Cuesta et al. 2008). The right panel of

Figure 4.8 shows the velocity profiles of the same 1.5 < ν < 2 sample as in Figure 4.6, again

split by the mass accretion rate, Γ. It is clear that for a given mass the halos with the

highest Γ have a more pronounced infall region compared to the low-Γ halos. Interestingly,

the maximum infall velocity is reached at radii about a factor of 1.5 larger than the radius

where the profiles reach their steepest slope. The latter radius appears to correspond to the

radius where the median radial infall velocity approaches zero. Furthermore, the radius of

the largest infall velocity shows a similar dependence on Γ as the radius where the profiles

reach the steepest slope (compare Figure 4.6 and the right panel of Figure 4.8).

Finally, Figure 4.9 shows the median profiles of halos of different peak heights but with

a similar accretion rate Γ. The highest-ν bin is omitted as it contains too few halos to be

split into subsamples. The figure shows that the profiles of halos with a given accretion rate

show little variation with ν, except for those samples with the lowest accretion rates and

peak heights. For these samples, a significant fraction of systems are located next to bigger

systems, and their profiles thus do not reflect the intrinsic shape of the halo profile itself

but the contribution from the profiles of their massive neighbors. On the other hand, the

higher-ν systems are relatively isolated on average, and the profiles of halos with ν > 1.5 are

independent of ν for a given range in Γ.

The results presented in this chapter demonstrate that the outer (0.5 <∼ r/R200m
<∼ 2)

density profiles of halos forming in the ΛCDM cosmology depend on the halo’s mass accretion
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Figure 4.9: Median slope profiles of halo samples with different mass accretion rates. Each
range of Γ is further split into subsamples of different ν. The figure shows that for ν >∼ 1.5
the profiles at a given Γ become more or less independent of ν. This independence illustrates
that the primary cause of the variation in the shape of the outer profiles is a variation in the
mass accretion rate. The profiles of the ν < 1.5 halos do show some residual dependence on
ν, which we attribute to environment variations around halos of lower peak heights.
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rate. The profiles are sensitive to the overall mass accretion rate rather than the mass

accreted via major mergers. This result opens an interesting avenue of estimating the mass

accretion rate of group and cluster halos observationally (Chapter 6.3).

4.3 A New Fitting Formula

Several analytic fitting formulae for the outer halo density profile have been proposed in

the recent literature (Prada et al. 2006; Tavio et al. 2008; Hayashi & White 2008; Oguri &

Hamana 2011). However, we find that these forms are not sufficiently flexible to accurately

fit the variations of the outer profiles discussed in the previous chapters. Thus, we propose

a new fitting formula to account for the trends and features we observe,

ρ(r) = ρinner × ftrans + ρouter

ρinner = ρEinasto = ρs exp

(
− 2

α

[(
r

rs

)α
− 1

])

ftrans =

[
1 +

(
r

rt

)β]− γ
β

ρouter = ρm

[
be

(
r

5R200m

)−se
+ 1

]
. (4.2)

The inner part of the halo is described by the Einasto profile, which is characterized by

three parameters. The transition term, ftrans, captures the steepening of the profile around

a truncation radius, rt. The parameters γ and β define the steepness of the profile at

r ∼ R200m and how quickly the slope changes, respectively. Finally, the outermost profile

is described by a power law, plus the mean density of the universe, ρm. Our choice of the

pivot radius at 5R200m is somewhat arbitrary, but we have checked that our results are

not sensitive to the exact choice in the range of 1 − 5R200m. Profiles with a power law

that decreases with radius (se > 0) approach ρm at sufficiently large radii. Note, however,

that the power-law function is only a convenient approximation for the range of radii we are
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considering here. At larger radii, the profile is not expected to follow a power law, or to reach

the mean density until much larger radii. Instead, the profile at r >∼ 9Rvir will follow a shape

proportional to the matter correlation function. We discuss alternative ways to parameterize

the outer profile based on the 2-halo term in Chapter 4.3.3. For the purposes of describing

the profiles at radii Rvir
<∼ r < 9Rvir, we find that a simple power law is accurate, and

therefore we adopt it as our fiducial choice due to its relative simplicity.

4.3.1 Parameters as a Function of Peak Height

We first consider the trends of the best-fit parameters as a function of peak height, ν. When

varying all eight of the free parameters in Equation (4.2), the analytic profile fits both the

mean and median profiles as a function of ν, for all peak height bins considered in this thesis,

at all redshifts up to z = 6, and at radii between 0.1Rvir and 9Rvir, with fractional errors

of <∼ 5%. However, we note that some of the parameters are correlated, indicating that the

number of free parameters can be reduced. For example, we can fix the Einasto parameter

α to the relation with ν calibrated by Gao et al. (2008),

α(ν) = 0.155 + 0.0095ν2 . (4.3)

Furthermore, we find that fixing β = 4 and γ = 8 in the ftrans term provides an accurate fit

if the truncation radius is related to ν and R200m as

rt = (1.9− 0.18ν)×R200m, (4.4)

so that

ftrans =

[
1 +

(
r

(1.9− 0.18ν)×R200m

)4
]−2

. (4.5)
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Figure 4.10: Fits of our fitting function (Equation (4.2), dashed lines) to the median (left
column) and mean (right column) profiles of various peak height bins at redshifts 0, 1, 2 and
4. The center column shows the slopes of the median profiles, the slopes of the fits, and the
difference between them (the slope profiles were not used in the fit, however). Only ρs, rs,
be, and se are varied, while α, β, γ, and rt are fixed according to Equation (4.5). The actual
profiles are shown only for z = 0. Note the larger scale of the slope difference panels in the
center column.
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We find that equally good fits can be obtained by fixing rt but varying γ with ν, setting

γ = 4ν and rt = 1.495R200m. The transition term then takes on the form

ftrans =

[
1 +

1

5

(
r

R200m

)4
]−ν

. (4.6)

In either case, we vary only four parameters in a fit: the remaining Einasto parameters ρs

and rs, and two parameters for the outer profile, be and se. The shape of the transition region

is fixed, with a mild dependence on ν and no dependence on redshift. This modified fitting

function fits the mean and median at all peak heights, redshifts, and radii with fractional

errors of <∼ 10% (Figure 4.10).

We note that the transition term has virtually no influence on the best-fit parameters of

the Einasto part of the profile. We have compared the concentrations obtained by fitting

the Einasto profile to the inner part of the profile only with the concentrations derived from

the full fit, and find that the differences are negligible. Thus, one can safely fix rs using

a concentration–mass relation without influencing the fits to the outer profiles. Likewise,

modifying the dependence of α on peak height (e.g., varying between the Gao et al. (2008)

and Duffy et al. (2008) relations) has very little influence on the best-fit parameters for the

outer profile.

4.3.2 Parameters as a Function of Mass Accretion Rate

We now consider samples of halos binned by both their mass accretion rate, Γ, and peak

height, ν. The median profiles of the Γ-selected samples show distinct features, such as

shallow inner profiles and a sharp downturn at a radius that depends on Γ (see Figure 4.9).

The sharpness of the turnover indicates that β may be larger than for the ν-selected samples.

Indeed, we obtain accurate fits by fixing β = 6, γ = 4, and α according to Equation (4.3).

With these constraints, the fit quality is slightly worse than for the ν-selected samples,
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Figure 4.11: Correlation between the median accretion rate of a halo sample, Γ, and the
best-fit truncation radius, rt, derived from fits to the median density profile of the sample.
Darker points correspond to higher-ν samples. The profiles of the lowest-ν bin exhibit large
scatter in the outer profiles due to neighboring massive halos, and were excluded from the
fit. In Diemer & Kravtsov (2014), we fitted only the z = 0 relation; this original best-fit
relation is indicated with the dotted gray line.
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γ = 4. The relation is well described by Equation (4.8), shown as a dashed line. The crosses
indicate data points that were excluded from the fit.

81



but fractional deviations for all samples are still within ≈ 15%. Most importantly, the

dependence of the radius where the profile steepens on the accretion rate is reflected in the

best-fit values for rt, which follow a relation with Γ and z,

rt
R200m

= 0.43 [1 + 0.92Ωm(z)]
(

1 + 2.18e−Γ/1.91
)
. (4.7)

This remarkably tight correlation is shown in Figure 4.11. The corresponding relation be-

tween the mean Γ of a halo sample and the best-fit rt to the mean profile exhibits slightly

more scatter than the median but is well fit by the same relation. Thus, Equation (4.7)

allows us to infer the accretion rate of a halo sample from a fit to its density profile.

For completeness, we also consider the relation between ν and rt in the median profiles

of halo samples selected only by ν, but for the case of β = 6 and γ = 4 rather than β = 4

and γ = 8 (Equation (4.5)). While the fit is not quite as accurate in this case, setting β = 6

and γ = 4 is useful when comparing to Γ-selected halo samples. The results shown in Figure

4.12 are well fit by the relation

rt
R200m

= 0.79
(

1 + 1.63e−ν/1.56
)
. (4.8)

As expected, changing β and γ leads to a relation that is somewhat different from the linear

correlation given in Equation (4.5).

4.3.3 The Outer Profile and the 2-halo Term

In the fitting formula presented in Equation (4.2), we simply parameterized the outer profile

with a power law instead of attempting to describe the shape of the profile with the 2-halo

term. In this chapter, we discuss alternative parameterizations of the outermost profile. In

principle, in the framework of the halo model, the outermost profile should be related to

the 2-halo term of the halo–matter correlation function (e.g., Smith et al. 2003; Hayashi &
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Figure 4.13: Same as Figure 4.10, but for different parameterizations on the outer profile.
Only the fractional differences of the profiles are shown. Left column: median, fitted with
the adjusted 2-halo term (Equation (4.11)) as the outer profile. The fits are slightly better
than using a pure power law (compared to Figure 4.10). Center column: same as the left
column, but for the mean. Right column: mean, fitted with an outer profile that is forced to
converge to the 2-halo term at large radii (Equation (4.12)). Particularly the lowest-ν bin
at z = 0 is poorly fit by the 2-halo term as its profile diverges from this term with radius at
r < 9Rvir, possibly due to sample variance. We do not show fits of Equation (4.12) to the
median profiles, as the 2-halo term is not expected to be a good description of the median.

White 2008), as

ρ2h(r) = [b(ν)ξlin(r) + 1] ρm (4.9)

where b(ν) is the peak-height-dependent bias (e.g., Sheth & Tormen 1999; Tinker et al. 2010).

ξlin is the linear matter–matter correlation function, which can be computed from the linear

power spectrum as

ξlin(r) =
1

2π2

∫ ∞
0

k2P (k)
sin(kr)

kr
dk . (4.10)

The mean profile is, by definition, guaranteed to approach the 2-halo term at some radius

where the 1-halo term becomes negligible. As demonstrated in Figure 4.13, the 2-halo term

based on the matter correlation function provides an inferior fit to the density profiles at

r < 9Rvir compared to our fiducial choice of the power law. To explore this issue more

generally, we have used fits in which we parameterize the outer profile as the 2-halo term
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Figure 4.14: Best-fit values for the excess bias and excess slope parameters, be and se, for two
different parameterizations of the outer profile. Red colors indicate results for the median
profiles, blue for the mean, with darker colors indicating lower redshifts (z = [0, 0.5, 1, 2, 4, 6]).
Left column: results for the power-law parameterization (Equation (4.2)), where be signifies
the normalization of the profile in units of ρm at 5R200m. Right column: results for a fit
that is forced to converge to the 2-halo term at large radii (Equation (4.12)). be < 0 means
that the profile lies below the 2-halo term, and se = 0 indicates that the convergence occurs
at an infinite radius. This situation occurs when the actual profile runs parallel to, or away
from the 2-halo term.
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with a power-law correction,

ρouter = ρm

[
be

(
r

5R200m

)−se
bh(ν)ξlin(r) + 1

]
, (4.11)

where we use the bias model of Tinker et al. (2010) to calculate bh(ν). The results of such

fits are shown in the left and center columns of Figure 4.13. We note that the 2-halo term

is itself close to a power law at r < 9Rvir, meaning that the fits do not differ greatly from

the simple power law of Equation (4.2).

For some applications, it might be desirable for the fitting function to converge to the

2-halo term at large radii, r >> 9Rvir. This behavior can be achieved with the following

parameterization of the outer profile:

ρouter = ρm

[
bh(ν)ξlin(r)

(
1 + be

(
r

5R200m

)−se)
+ 1

]
. (4.12)

The resulting fits are somewhat worse and exhibit fractional deviations of up to ≈ 15%, as

shown in the right column of Figure 4.13. Moreover, the 2-halo term can be expected to

be an accurate description of the outer part only of the mean profiles, but not the median

profiles. Indeed, we find that the 2-halo term overestimates the median profiles significantly,

and that the ratio of the mean to the median profiles varies with radius.

These considerations have motivated our use of a simple power-law form for the outermost

density profile in our fiducial fits. Figure 4.14 shows the best-fit values for the two parameters

for the outer profile, be and se, from fits to halo samples of different ν, at different redshifts,

and for both the mean and median profiles. The best-fit values show a weak variation with

ν, but a stronger variation with redshift. Overall, the variations are relatively mild though,

which is particularly true for the slope se, as can also be visually seen in Figures 4.4 and

4.6. The best-fit values are also somewhat different for the mean and median profiles of

the samples. The strongest deviations for low-ν samples are likely due to sample variance.
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Indeed, we find that in our smallest simulation, L0063, the outermost density profiles of halos

of a given mass are systematically higher compared to their counterparts from the L0125

box.

Figure 4.14 also shows be and se derived from fits using Equation (4.12), i.e., forcing the

outer profile to converge to the 2-halo term at large radii. In this case, se indicates how

quickly the mean profiles approach the 2-halo term. se = 0 means that the profile runs

either parallel to the 2-halo term, or even away from it. Finally, we have verified that using

the parameterizations of Equation (4.11) or Equation (4.12) does not change the best-fit

parameters for β, γ, or rt, or the relation between rt and Γ when fitting Γ-selected samples.

4.3.4 Comparison with Previous Models

In this chapter, we briefly review a number of fitting formulae for halo density profiles previ-

ously proposed in the literature, and we illustrate why they fail to reproduce the steepening

of the outer profiles discussed in this thesis. For the inner part of halo density profiles,

r <∼ Rvir, the NFW (Navarro et al. 1997) and Einasto (1965) profiles are most commonly

used. Prada et al. (2006) proposed to improve the Einasto profile by adding the mean matter

density ρm to account for the outer parts. Tavio et al. (2008) extended this idea by using the

NFW profile, ρm, and two more terms to describe a cutoff around Rvir and the transition to

ρm.

Hayashi & White (2008) proposed to fit density profiles with the maximum of the 1-

halo and 2-halo terms, where the 1-halo term can be represented by either the NFW or

Einasto profile. Oguri & Hamana (2011) continued in this spirit but proposed adding the 1-

and 2-halo terms rather than taking their maximum, rendering the function differentiable,

which is desirable when computing the weak-lensing properties of a profile. They model

the 1-halo term using the profile of Baltz et al. (2009), given by an NFW profile multiplied

by a truncation term. We note that the truncation term used in Oguri & Hamana (2011)
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corresponds to the transition term in Equation (4.2), but with fixed values of β = 2 and

γ = 4.

Figure 4.15 shows fits of some of these functional forms to the mean density profile of

halos with 3.0 < ν < 3.5 at z = 0 (the fit results for the median profile of this sample are

similar). While the functions can fit the inner regions of the density profile well, none of them

have sufficient flexibility to accurately match the shape of the outer profile. For example, the

function advocated by Tavio et al. (2008) reaches errors of up to ≈ 35% at r ∼ 1− 2R200m.

The function of Prada et al. (2006, not plotted in Figure 4.15) approaches the mean density

at large radii, but ρm underestimates the true profile dramatically. Finally, the 2-halo term

as computed from Equation (4.9) describes the particular mean halo profile in Figure 4.15

with an accuracy of only ≈ 20%. In many cases, the 2-halo term overestimates the median

profiles by even larger margins.

All fits shown in Figure 4.15, as well as those shown in the following figures, were per-

formed over the radial range 0.1Rvir < r < 9Rvir. The fits in Figure 4.15 were derived by

minimizing ∆(r2ρ). If we instead minimize ∆ρ/ρ, the previously proposed fitting functions

fit the outer profile slightly better, but at the expense of accuracy in the inner regions. For

the functional profile form we propose in this study, the difference between fits with different

merit functions is small, but using ∆ρ/ρ places somewhat more emphasis on the transition

region at ∼ 1 − 3R200m, where r2ρ is smaller by an order of magnitude compared to the

inner and outer radii. As we are particularly interested in this region, all fits except for those

shown in Figure 4.15 are performed by minimizing ∆ρ/ρ. We have verified that minimizing

∆(r2ρ) does not systematically change any of the best-fit parameters or conclusions.

With its eight free parameters, our function can fit the density profiles to better than

5% error at almost all radii, with some deviations to about 5% around the steepest part at

higher redshift. However, in Chapter 4.3 we claimed that the number of free parameters can

be reduced to four without a significant loss in fit quality. Figure 4.10 shows fits to the mean
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Figure 4.15: Fits to the mean profile of halos with 3 < ν < 3.5. The plot shows only fitting
functions that were designed to fit the outer halo density profile. The Tavio et al. (2008,
red dot-dashed) function captures the steepening but does not have the freedom to shift it
to the correct radius. The fit was performed with four free parameters, rather than the one-
parameter version also described in their paper. The functions of Hayashi & White (2008,
red solid) and Oguri & Hamana (2011, red dashed) match the overall shape well but rely
on the 2-halo term for the outer regions, which overestimates this particular mean profile
significantly. The fitting formula proposed in this thesis alleviates these issues (light blue).
The fit shown here was performed with fixed α, β = 4, γ = 8, and rt according to Equation
(4.5) and using Equation (4.11) for the outer profile.
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and median samples of halos with various peak heights, using our fitting function (Equation

(4.2)) and the linear relation between ν and rt (Equation (4.5)). The fits match the true

profiles to better than ≈ 10% at virtually all radii, redshifts, and peak heights. At z = 6,

we observe deviations slightly larger than 10% at the radius of the steepest slope.
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CHAPTER 5

RESULTS III: A NEW DEFINITION OF THE HALO

BOUNDARY

In the previous chapter, we showed that the outer density profiles of halos exhibit a steepening

which gets more pronounced with increasing mass accretion rate. In this chapter, we discuss

the physical origin of the steepening, and show that it corresponds to the apocenter of

infalling particles on their first orbit. Based on this insight, we propose the splashback radius

as a new, physically motivated definition of the halo boundary. Most of the results in this

chapter are presented in Diemer & Kravtsov (2014) and More et al. (2015). We refer the

reader to the latter paper for details on the evolution of the splashback radius and mass,

and comparisons to the conventional spherical overdensity mass definitions.

5.1 Splashback: The Physical Origin of the Profile Steepening

In order to gain insight into the physical origin of the steepening of the density profiles,

let us consider a simplified theoretical model of halo collapse. In Chapter 1.1.2, we briefly

discussed the spherical collapse model which describes the secondary infall of matter onto

a pre-existing overdensity with a power-law radial profile in an Ωm = 1 universe (Fillmore

& Goldreich 1984; Bertschinger 1985). Besides predicting power-law density profiles with a

slope that depends on the slope of the initial density perturbation, the model also makes an

interesting prediction for the structure of the outer profiles.

In the spherical collapse model, the matter around the perturbation can be thought of

as an infinite number of shells that are bound to the overdensity, where each shell initially

expands with the Hubble flow, decelerates, eventually turns around and starts contracting.

At some point, each shell crosses previously collapsed shells that are now oscillating back

and forth through the perturbation potential, thereby entering the so-called multi-stream
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region of the halo. After passing through the center of the perturbation the shell re-expands

and eventually reaches the apocenter of its first orbit. Each successive shell collapses onto

a deeper potential well than the preceding shell, and thus acquires a higher energy and a

larger apocenter. In this picture, material piles up near the apocenter due to its small radial

velocity in this region of the orbit, creating a density enhancement or caustic.

In the case of spherical symmetry, this caustic represents a discontinuity (i.e., an in-

finitely sharp jump) in the density profile (Mohayaee & Shandarin 2006). In the case of

ellipsoidal collapse, the slope of the profile becomes finite (Lithwick & Dalal 2011), but the

density jump remains sharp (Adhikari et al. 2014). In CDM simulations, caustics are fur-

ther smoothed out by relaxation due to mergers, interactions with subhalos, and the radial

orbit instability (Vogelsberger et al. 2009). Nevertheless, caustics have been detected in

cosmological simulations (Diemand & Kuhlen 2008).

Before concluding that we have detected the caustic predicted by the spherical collapse

model in simulated density profiles, we need to estimate the radial range in which the model

predicts the density jump to occur. In the one-dimensional spherical collapse model, the

caustic occurs at a fixed fraction of 0.364 times the turnaround radius, rta (Bertschinger

1985). In more realistic 3D simulations of spherical collapse, the caustic occurs at ≈ 0.12−

0.36rta, depending on the slope of the density profile of the initial perturbation (see Figure 4

of Vogelsberger et al. 2011). In our simulations, rta (defined operationally as the outermost

radius where the mean radial velocity of particles crosses zero) varies from ≈ 2R200m to

≈ 2.8R200m, depending on the median ν of a halo sample. However, for low-ν halos, rta

is not well defined as the velocity profile joins smoothly into the Hubble flow. For ν > 1

halos, on the other hand, the turnaround radius occurs at ≈ 2.8R200m for the median profile,

regardless of ν (see Figure 4.8). We can thus expect to find a caustic at ≈ 0.4 − 1R200m,

consistent with the radii where where we find the density profiles to steepen (Figure 4.6).

Furthermore, the spherical collapse model qualitatively predicts the correct dependence
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of the steepening radius on the mass accretion rate. In the simulations of spherical collapse

of Vogelsberger et al. (2011), the caustic radius is larger for steeper slopes of the density

profile of the initial perturbation. In realistic, cosmological simulations, the steep part of the

Gaussian initial peak profiles corresponds to the slow accretion regime of halos (Dalal et al.

2008, see also the more detailed discussion in Chapter 6.1). Thus, we expect the caustic

radius to increase with decreasing accretion rate, as observed in our simulations (Figure

4.11).

Given that the spherical collapse model predicts a caustic at roughly the correct radius,

and with the qualitatively correct dependence on the mass accretion rate, we conclude that

the steepening we have detected in the density profiles does, indeed, correspond to the caustic

due to the pile-up of matter at the apocenter of its first orbit. Adhikari et al. (2014) have

confirmed this conjecture and showed that the location of the steepest slope of the density

profile can be reproduced by a simple model based on the spherical collapse model.

In the following, we shall refer to the location of the infall caustic as the splashback radius,

Rsp, and operationally define it as the radius where the spherically averaged density profile

of a halo is steepest. As the splashback radius corresponds to the apocenter of matter on its

first orbit, it cleanly separates the infall region around a halo from the region where material

has already orbited at least once. Thus, Rsp is a natural, physically motivated boundary of

a halo, and changes in the enclosed mass, Msp, correspond to the physical accretion of mass,

meaning that Msp does not suffer from unphysical pseudo-evolution (Diemer et al. 2013b).

Before calibrating Rsp systematically in the next chapter, we illustrate the concept of

the splashback radius using two individual, cluster-sized halos with similar masses but very

different mass accretion rates, representative of the slow and fast accreting sub-populations.

Figure 5.1 shows the density distribution in a slice through the halo centers, while Figure

5.2 shows the spherically averaged density profiles and their logarithmic slope. Both figures

contrast Rsp (dashed lines) with R200m (dot-dashed lines) and the “virial” radius Rvir (solid
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Figure 5.1: Projected density in a slice of thickness 0.15R200m through the center of two
halos with low (top, Γ = 0.8) and high (bottom, Γ = 2.7) mass accretion rates. The halos
have similar masses, Mvir = 1.1 × 1014 and 1.8 × 1014 h−1 M� at z = 0. The white lines
show Rvir (solid), R200m (dot-dashed), Rsp (dashed) and Rinfall (dotted; see Chapter 5.2 for
a detailed description of these radii). Rsp and Rinfall were calculated using the calibrations
presented in Chapter 5.2 rather than the density profiles of the individual halos shown. Halos
with a low mass accretion rate exhibit a caustic at a radius significantly larger than R200m,
whereas fast-accreting halos have Rsp <∼ R200m (at z = 0). The visualizations were created
using the algorithm of Kaehler et al. (2012).
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Figure 5.2: Spherically averaged density profiles (top panels) and their logarithmic slope
(bottom panels) of the two halos shown in Figure 5.1. The slopes were computed using a
profile smoothed with the fourth-order Savitzky & Golay (1964) filter over the 15 nearest
bins. The steepening around Rsp is very pronounced in both profiles, but the profile of the
faster accreting halo reaches a steeper slope and at a smaller radius. The vertical lines in the
bottom panels mark the same radii shown in Figure 5.1 using the same line types, i.e. Rvir,
Rsp, and Rinfall (defined as the radius where the mean radial velocity profile of v̄r reaches
minimum) from left to right. For the slower accreting halo (left), the estimate of Equation
5.1 slightly underestimates the true Rsp. This disagreement is not surprising since the Rsp

of individual halos are expected to scatter around the median relation.
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lines). The Rsp radii shown in the figures were predicted using the median relation given by

Equation (5.1) in the following chapter, as well as the Γ of the specific halos as determined

from the halo catalogs. Figures 5.1 and 5.2 clearly demonstrate that the density fields exhibit

a sharp jump at R ≈ Rsp, and that this radius occurs at a smaller multiple of R200m for the

faster accreting halo. Figure 5.2 furthermore highlights how steep the density profile can get

around Rsp (a logarithmic slope of −7).

We note that an alternative definition of the splashback radius could be the radius where

the average radial velocity in a shell is most negative, Rinfall (dotted lines in Figures 5.1 and

5.2). We find that Rinfall ≈ 1.4Rsp and Minfall ≈ 1.2Msp at all redshifts and halo masses, a

proportionality we already noticed in Figure 4.8. Figure 5.1 shows that Rinfall extends into

the filamentary regions and includes mass that is clearly not associated with the collapsed

halo yet. Figure 5.2 confirms this impression, as Rinfall does not correspond to a particular

feature in the density profiles. Thus, the splashback radius definition based on the steepest

density profile slope is preferable, and will be used for the remainder of this thesis.

5.2 Calibration of the Splashback Radius and Mass

We now return to the averaged density profiles presented in Chapter 4 which allow us to

systematically calibrate Rsp over a large range of masses, redshifts, and mass accretion rates.

To measure Rsp, we use the Γ-selected profiles shown in Figure 4.9 and fit them with the

fitting function of Equation (4.2). As discussed in Chapter 4.3.2, we set β = 6, γ = 4, and α

according to Equation (4.3). The other parameters, namely rs, rt, be, and se, are determined

from a least-squares fit. We use only halo samples with ν > 1 (M > 3 × 1012 h−1 M� at

z = 0, M > 1011h−1 M� at z = 1) for this analysis, as the density jump associated with the

splashback radius is difficult to measure robustly from spherically averaged profiles in halos

with low ν and low Γ. This issue is apparent in Figure 4.9: for profiles with low ν and low Γ,

the 2-halo term begins to dominate at radii smaller than Rsp, thus concealing the steepening
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in the density profile. This does not mean that low-mass halos do not exhibit a steepening

in their density profile; however, they are strongly influenced by their environment, making

it difficult to discern the location of Rsp.

Figure 5.3 demonstrates that, at fixed Γ, Rsp/R200m does not depend on ν, but does

depend on z. In the model of Adhikari et al. (2014), the overdensity associated with the

splashback radius depends on Ωm(z). We thus parameterize the dependence of Rsp/R200m

on Γ and z with the fitting function

Rsp

R200m
= 0.54 [1 + 0.53Ωm(z)]

(
1 + 1.36e−Γ/3.04

)
, (5.1)

shown with solid lines in Figure 5.3. Given this function, we could now compute the median

Msp from Rsp by assuming a particular form of the density profile. However, we get a more

accurate fit by directly calibrating the median ratio of Msp and M200m using the simulated

density profiles,

Msp

M200m
= 0.59 [1 + 0.35Ωm(z)]

(
1 + 0.92e−Γ/4.54

)
. (5.2)

We note that these formulae were calibrated only for our nominal cosmology (Table 2.2), and

that we are extrapolating the relations to ν < 1 halos which were not used in the fit. The

calibration of ∆sp of Adhikari et al. (2014) is largely consistent with ours once the difference

between their measure for the accretion rate, s, and Γ have been accounted for.

In observations, the accretion rate or the exact density profile of a halo are not readily

available. Thus, we also quantify the dependence of Rsp and Msp on the conventionally

defined, observable M∆, or rather peak height, in Figure 5.4. This dependence arises because

halos of higher peak height exhibit, on average, higher accretion rates (Figure 4.7). In order

to translate Equations (5.1) and (5.2) into functions of ν rather than Γ, we use the model

of Zhao et al. (2009) to calculate halo mass growth histories. For each redshift along an
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Figure 5.3: Splashback radius, Rsp (top panel), and the mass within this radius, Msp (bottom
panel), as a function of the halo mass accretion rate, Γ. Darker points correspond to halo
samples with higher peak height, ν. The halos were binned in ν-bins of width 0.5, starting
at ν = 1. Samples with ν < 1 were omitted as Rsp is hard to measure for their profiles (see
the discussion in Chapter 5.2). The figure demonstrates that Rsp/R200m and Msp/M200m
depend on Γ and z, but do not show a strong dependence on ν at fixed accretion rate and
redshift. For halos in our ΛCDM cosmology these dependencies can be approximated by
Equations (5.1) and (5.2), shown with a solid line for each redshift.
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considerably larger radius of Rsp ∼ 1.5R200m.
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accretion history we compute the accretion rate Γ across the same redshift intervals as in

Chapter 4 and calculate Rsp and Msp using Equations (5.1) and (5.2). Figure 5.4 shows the

results as a function of peak height. The relations are more or less independent of redshift,

and well fitted by the approximations

Rsp

R200m
= 0.81

(
1 + 0.97e−ν/2.44

)
(5.3)

and

Msp

M200m
= 0.82

(
1 + 0.63e−ν/3.52

)
, (5.4)

shown with dashed lines. The peak height in these equations refers to ν200m rather than

νvir, but the difference between those definitions is ≤ 5% for all masses and redshifts. Figure

5.4 demonstrates that, in the concordance cosmological model, the redshift dependence of

Rsp/R200m is approximately cancelled by the redshift dependence of Γ(ν). The Rsp and Msp

calibrations presented in Equations (5.3) and (5.4) were obtained using the median profiles

of halos of a given Γ or ν. In observations, however, stacking would result in an average

of the density profile, not the median Rsp and Msp. We have checked that the ν–Rsp and

ν–Msp relations obtained from averaged profiles are almost identical to Equations (5.3) and

(5.4).
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CHAPTER 6

DISCUSSION

We have presented a comprehensive analysis of the density profiles of dark matter halos, with

a particular focus on their universality. As the inner profiles depend only on mass and con-

centration, we proposed a simple, universal (i.e., cosmology and redshift independent) model

for the concentration-mass relation that depends only on two variables, peak height and the

local slope of the matter power spectrum. With only seven free parameters, this model can

explain halo concentrations across a wide range of masses, redshifts, and cosmologies. In the

second part of the thesis, we turned our attention to the outer parts of the density profiles,

and showed that the density profile exhibits a rapid steepening that depends on a halo’s

mass accretion rate at r >∼ 0.5R200m. As conventional models such as the NFW and Einasto

profiles do not take this dependence into account, we proposed a new fitting formula and

present best-fit parameters as a function of a halo’s peak height and mass accretion rate.

Finally, we showed that the steepening of the profiles is due to the accumulation of material

at the apocenter of its first orbit after infall. We argued that the radius of the steepening is

a more physically motivated halo boundary than the commonly used spherical overdensity

masses, and calibrated the relation between those definitions.

In this chapter, we review and discuss our findings regarding the universality of halo

density profiles. We attempt to reduce the parameter space needed to describe the profiles

by considering different parameters (such as peak curvature) and invoking relations between

known parameters (such as concentration and mass accretion rate). Furthermore, we discuss

potentially observable signatures of the splashback radius.
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6.1 Are Halo Density Profiles Universal?

We have analyzed the universality of halo density profiles with respect to halo mass, peak

height, redshift, mass accretion rate, and the slope of the matter power spectrum. Here, we

summarize these results and offer explanations for some of the (non-)universalities we found.

6.1.1 The Physical Origin of Universality

In the introduction, we hinted at a possible reason for the relative universality of halo density

profiles: the intimate relation to the profiles of their progenitor peaks in the initial Gaussian

random field. We begin by reviewing this mechanism before we discuss ways in which the

results presented in this thesis challenge the established picture.

The initial density peaks generally exhibit a characteristic shape that lies somewhere

between a top-hat and a Gaussian profile (Bardeen et al. 1986; Dalal et al. 2008). While a

top-hat overdensity in an expanding universe would collapse into a point-like overdensity in

two free-fall times, the collapse of a Gaussian overdensity is more extended in time. Real

peaks experience a mixture of both regimes: initially, the shallow, inner part of the peak

collapses rapidly, but this growth slows down when the shallower, outer regions collapse.

These phases are known as the fast and slow accretion regimes (Zhao et al. 2003b, 2009;

Dalal et al. 2010). As shells of matter accrete onto the halo, the density of the accreted

matter is “remembered” by the halo density profile. In particular, the density enclosed

within a particular radius is proportional to the critical density of the universe at the time

of accretion (Ludlow et al. 2013, 2014). Thus, the fast and slow collapse phases translate

into shallow and steep parts of the final halo density profile, meaning that the profile of the

initial peak is imprinted on the profile of the resulting halo. The transition between fast and

slow accretion is marked by the scale radius which stops growing in the slow accretion regime

(Bullock et al. 2001; Wechsler et al. 2002; Zhao et al. 2009). However, the outer radius still

grows through a mixture of pseudo-evolution and physical accretion onto the outskirts of
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the halo (Diemer et al. 2013b; More et al. 2015). Thus, concentration grows with time after

a halo has transitioned into the slow accretion regime. In this framework, larger halos are

younger and have lower concentrations because small objects collapse before large objects in

hierarchical structure formation.

According to this idealized picture, we would expect that halo density profiles should be

a universal function with peak height as the only parameter, ρ(r) = ρ(r, ν). By definition,

ν captures the relative age of a peak: a halo with ν = 1 is just collapsing (according to the

top-hat collapse model), halos with smaller peak heights have, on average, already collapsed,

and halos with larger peak heights will, on average, collapse in the future. If we take the

dependence of the central density of the profiles on mass into account by rescaling the density

by the mean or critical density, and rescaling the radius with a spherical overdensity radius

that encloses a certain overdensity, we expect the profiles to overlap (Figure 4.2). The

differences due to concentration would be accounted for by a universal concentration-peak

height relation, c = c(ν), that captures the dependence of concentration on halo age.

In this thesis, we have tested these hypotheses, and explored features of the density

profiles and their concentrations that deviate from the idealized picture. In Chapter 3,

we showed that the median concentration is not quite a universal function of ν. For the

first time, we explained this non-universality with a physically motivated model, positing

that the non-universality can be entirely explained by changes in the slope of the matter

power spectrum, n. Considering the expression c = c(ν, n) rather than just c(ν) allowed us

to restore the redshift and cosmology independence of halo concentrations. However, the

impact of n in our model breaks the simplistic assumption of a monotonically increasing

age-concentration relation (i.e., our model predicts an upturn of concentration at high peak

heights).

Given our concentration model, we can express the average inner halo density profiles

as ρ(r) = ρ(r, ν, n) (though the scatter in the c–M relation is significant). On the other
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hand, the steepening in the outer density profiles demonstrated in Chapter 4 cannot easily

be explained within the framework of the initial peak-halo connection. As discussed in

Chapter 5.1, the steepening is caused by the dynamics of accreting matter. While we give

an improved fitting function for the profiles and calibrations of its parameters as a function

of peak height, those calibrations work only on average: the shape of the profiles depends of

the mass accretion rate of individual halos, ρ(r) = ρ(r, ν, n,Γ).

In summary, we have confirmed that the universality of density profiles is intimately

related to the accretion histories and progenitor peaks of halos, and shown how a universal

relation between peak height and median concentration can be derived by considering the

power spectrum slope as an additional variable. On the other hand, we demonstrated that

the exact shape of the outer profiles is non-universal in the sense that it depends on a halo’s

dynamical state.

6.1.2 The Role of the Boundary Definition

As mentioned in Chapters 4 and 6.1.1, the universality of the density profiles can be es-

tablished only if their first-order dependence on halo mass is scaled out. This procedure

necessarily involves a particular definition of the outer boundary of a halo by which the radii

are divided.

In Chapter 4.1, we demonstrated that the choice of radius definition has non-trivial

consequences for the universality of the profiles across redshifts. In particular, we found that

the outermost density profiles at r >∼ R200m are remarkably universal when radii are scaled

by R200m (or, more generally, by any radius around R200m that is defined with respect to

the mean density). This scaling is naturally explained in the context of the spherical collapse

model which predicts a universal profile in units of the turnaround radius, and predicts this

radius to enclose a fixed a fixed overdensity with respect to the mean density. However,

the inner density profiles at smaller radii are most universal when radii are scaled by R200c.
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This scaling could possibly be explained by the results of Ludlow et al. (2013) who find that

the density enclosed within a particular inner radius is proportional to the critical density of

the universe at the time when that part of the halo was assembled. However, the difference

between the mean and critical densities of the universe manifests itself only at low redshift,

and it is not clear that the scaling of Ludlow et al. (2013) is unique to the critical density.

Thus, we conclude that the universality with R200c could also be a coincidence. Nevertheless,

our results have immediate practical implications: where the inner profiles are concerned,

radius definitions based on the critical density, such as R500c, are justified. As a direct

consequence, we found that concentration is most universal in units of c200c. However,

for the outer profiles radii defined with respect to the mean density are more physically

meaningful.

Given these seemingly contradictory findings regarding spherical overdensity radii, we

posed the question whether such radii are a good definition of the halo boundary. In Chapter

5, we argued that the splashback radius is a more physically motivated boundary: it is

defined by the dynamics of the infall of matter, and changes in the enclosed mass Msp

reflect the physical accretion of matter. In contrast, all commonly used spherical overdensity

radii are smaller than Rsp (except for the most rapidly accreting halos), meaning that their

evolution includes an unphysical pseudo-evolution due to previously accreted matter (Diemer

et al. 2013b). However, Rsp is relatively close to R200m which might explain why spherical

overdensity definitions work reasonably well. One intriguing possibility is that the halo mass

function based on Msp might be more universal than that of spherical overdensity masses,

which would explain why the mass function of M200m is more universal than that of M200c

(Tinker et al. 2008).
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Figure 6.1: Same as Figure 4.6, but for samples split by concentration. The red line shows the
slope of the median density profile of all halos in the 1.5 < ν < 2 sample. As concentration
correlates with accretion rate, low-concentration halos have steeper outer density profiles.
The steepening is not quite as pronounced as when selecting the sample by accretion rate
directly due to scatter in the relation between concentration and accretion rate.

6.2 Improving Universality

In this chapter, we describe attempts to further reduce the parameter space of our models

by establishing relations between parameters (such as concentration and the mass accretion

rate), and by considering different, physically motivated parameters (such as the curvature

of the initial density peaks).

6.2.1 Concentration as a Proxy for the Accretion Rate

In Chapters 4.3.2 and 5.2, we quantified how the profile steepening and splashback radius

depend on the mass accretion rate of a halo. In observations, however, the mass accretion

rate is generally not available. One way to improve upon estimates based solely on the halo

mass is to also take concentration into account. Based on its connection with a halo’s mass

accretion history, we expect there to be a relation between c and Γ (Bullock et al. 2001;
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Wechsler et al. 2002; Zhao et al. 2003b, 2009; Ludlow et al. 2014, see also Chapter 6.1.1).

Given that concentration can be universally modeled (Chapter 3), a perfect correlation

Γ = Γ(c) would remove the dependence of ρ on Γ and thus restore a universal ρ(r, ν, n)

profile.

In Figure 6.1, we test whether we can select profiles with a pronounced steepening by their

concentration. The lowest concentration sample exhibits a steepening of the outer profile

almost as pronounced as the highest-Γ bin in Figure 4.6, whereas the highest concentration

bin resembles the slowly accreting halos. We note that the steepening itself may lead to a

slightly different Rvir at a fixed scale radius and thus slightly influence the concentration.

However, it is clear from Figures 4.6 and 6.1 that the correlation between the accretion

rate and concentration is mostly driven by the different shape of the inner profile and the

resulting differences in scale radius at fixed mass. We thus conclude that concentration as

derived from a fit to the inner density profile provides a more or less independent estimate

of the mass accretion rate.

In order to quantify the connection demonstrated in Figure 6.1, we measure the relation

between c and Γ in our simulations. Unfortunately, the relation depends on redshift and

mass in a non-trivial manner and exhibits significant scatter. However, at z = 0 the median

relation is more or less mass-independent,

Γ ≈ 3.43− 2.74 log10(cvir) . (6.1)

This relation was calibrated only for the Bolshoi cosmology used in this paper, and for

our particular definition of Γ. Nevertheless, the relation can be used to estimate the mass

accretion rate, and thus Rsp and Msp, at z = 0.

In summary, knowledge of the concentration of a halo allows an informed guess of its

mass accretion rate. Due to the large scatter in the relation, however, concentration does

not select steep outer profiles as cleanly as Γ.
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6.2.2 Peak Curvature as an Additional Parameter

In Chapter 3.2, we discussed how the slope of the matter power spectrum might influence

concentration through two distinct physical effects: the abundance of sub-structure and the

shape of the peaks in the initial Gaussian random field. Here, we describe our efforts to

model the latter effect directly. As discussed in Chapter 6.1.1, the shape of the initial peaks

influences concentration via the mass accretion history of a halo (Dalal et al. 2008, 2010;

Ludlow et al. 2013, 2014). Thus, a quantitative measure of the shape of the initial peak

might be a better predictor of concentration than the power spectrum slope.

We can obtain a rough estimate of the “steepness” of a peak using the curvature pa-

rameter, defined as x ≡ −∇2δ/σ2 (Bardeen et al. 1986). Here, δ is the overdensity field

and σ2 is the second moment of the variance (Equation (4.6c) in Bardeen et al. (1986), or

Equation (1.8) with an extra k4 factor in the integral). The higher moments such as σ2 are

ill-defined for the top-hat filter, and we thus switch to a Gaussian filter for this calculation.

We compute the average curvature of peaks at fixed ν, 〈x〉, using the approximation given

in Equation (6.14) of Bardeen et al. (1986). We have checked this approximation against
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the exact integral in Equation (A14) and found it to be accurate at the percent level. Figure

6.2 shows 〈x〉 as a function of redshift and top-hat ν. Due to its dependence on k, 〈x〉

differs with redshift at fixed ν and is thus a candidate for causing the non-universality of

the c–ν relation. However, we note that at ν ≈ 1 the differences in 〈x〉 vanish, while it is

precisely around this ν range that we observe the largest deviations from universality of the

c–ν relation (Figure 3.4). Hence, the variations in 〈x〉 cannot by themselves account for the

non-universality of the c–ν relation.

This failure does not necessarily imply that peak curvature is not partly responsible for

the non-universality in the c–ν relation. However, using curvature as one of the variables

controlling concentrations would require at least one additional variable to explain the de-

viations from universality at low ν. Furthermore, there are two possible reasons why 〈x〉

might not be the optimal parameter to consider. First, the mean curvature is computed for

all peaks, but not all peaks form halos. In particular, small peaks are likely to be absorbed

into larger halos (the so-called cloud-in-cloud problem; Bardeen et al. 1986). Thus, the mean

curvature in the low-ν regime does not correspond to the mean curvature of those peaks that

end up forming halos. Second, 〈x〉 may not describe the slope of the outer profile accurately;

for this reason, Dalal et al. (2010) linked concentration to a particular measure of the outer

slope of peaks as an alternative. Unfortunately, this measure suffers from the cloud-in-cloud

problem as well.

Given these difficulties, the effect of peak shape would need to be directly measured

in simulations, for example by tracing halos back to their initial Lagrangian volume and

comparing their peak profile and concentration. However, the success of our model indicates

that the dependence on the peak shape is already taken into account through the explicit

dependence on the power spectrum slope.
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Figure 6.3: Correlation between the accretion rate of a halo, Γ, and the slope of its density
profile for a sample of about 3000 individual, massive halos (Mvir > 3× 1014 h−1 M�). The
slope is averaged over the radial range 0.7 < r/R200m < 1. The slopes follow the same trend
observed in the median profiles in Figure 4.9, namely, a steepening slope around R200m with
increasing Γ. The majority of large accretion rates, Γ > 2, are due to recent major mergers,
but excluding such halos barely changes the median trend.

6.3 Observational Signatures of the Mass Accretion Rate and

Splashback Radius

In Chapter 4.2, we showed that the outer halo density profile depends on the mass accretion

rate experienced by a halo over the past few billion years. This correlation potentially opens

a new avenue for assessing the dynamical state of halos, if the effects of the mass accretion

rate on the profiles can be detected in observations.

First, we must assess to what degree the trends with Γ observed in the median density

profiles hold for individual halos as well. Figure 6.3 shows the distribution of slopes around

R200m as a function of Γ. We focus on cluster-sized halos, which have the best near-term

prospects for measurements of the outer density profiles via X-ray or weak-lensing obser-

vations. As with the median profiles in Figure 4.9, the slope around R200m steepens with

increasing Γ, but the relation is subject to significant scatter. In order to reduce the scatter,

we plot the average slope in the radial range 0.7 < r/R200m < 1. Averaging, however, means
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that the slopes are somewhat less steep than the steepest slopes in Figure 4.9. Although

the scatter makes it unlikely that the slope of individual objects can be used for an accurate

estimate of their accretion rate, observational measurements of a steep slope (e.g., γ̄ <∼ − 4)

would be a distinct signature of a high accretion rate (Γ >∼ 1.5).

Another question is whether the steepening of the profiles would be detectable using

weak gravitational lensing, which probes the projected mass distribution. Figure 6.4 shows

the projected surface density profiles of the median profiles of halo samples with different

accretion rates. The three-dimensional profiles were integrated out to 10Rvir. For clarity,

only the highest-Γ bin is shown in the top panel along with the best-fit projected NFW

profile. We note that there is no analytical expression for the projected Einasto profile (e.g.,

Retana-Montenegro et al. 2012). However, such a projected profile will be very close to the

Sérsic profile (e.g., Lima Neto et al. 1999), and thus an analytic projected profile, equivalent

to the density profile of Equation (4.2), can be constructed. Even in projection, the profile

steepening is clearly visible at radii r > 0.5R200m. The bottom panel of Figure 6.4 shows the

slopes of the profile in the top panel, the NFW fit, and the bins with a lower accretion rate

for comparison. The dependence of the profile shape on the mass accretion rate is clearly

discernible in the projected mass profiles.

Our results for dark matter are largely valid for the gas profiles of clusters as well. The

simulations of Lau et al. (2014) demonstrate that the gas is shocked at a radius close to Rsp

which exhibits a strikingly similar dependence on the mass accretion rate.

Finally, we note that the profile steepening may already have been detected in several

galaxy clusters. First, Rines et al. (2013) derive the mass profiles of clusters to large radii

using the velocity caustic method, and find profile slopes steeper than the NFW prediction

of −3 at a radius somewhat larger than R200m. Second, Tully (2015) present evidence for

a sharp drop in the number density of galaxies around the Coma and Virgo clusters. The

radii at which this break occurs are compatible with our estimates of Rsp, but would point
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Figure 6.4: The impact of the accretion rate on the projected density profiles of halos. We
investigate the sample with 2.5 < ν < 3 as an example. Top panel: projected surface
density profile of the highest-Γ bin (solid line) and an NFW fit (dashed line). An analytical
expression for the projected NFW profile (Bartelmann 1996) was fit at r < 0.5Rvir. The
Γ > 3 profile is easily distinguishable from the NFW fit. Bottom panel: logarithmic slopes
of the projected density profiles of four Γ bins, with the same NFW fit as in the left panel
for comparison. While the slopes are shallower in projection than in three dimensions, the
effect of the accretion rate is still easily discernible.
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to very high mass accretion rates in both clusters. Overall, Tully (2015) find a scaling of

Rsp ≈ 1.33R200c, significantly smaller than our calibration. This disagreement can be traced

to some of the assumptions made in their calculation of the splashback radius.
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CHAPTER 7

CONCLUSIONS

We have presented a detailed study of the density profiles of ΛCDM halos, with a partic-

ular focus on deviations from universality. In the first part of the thesis, we considered

the inner regions of the density profiles (r <∼ Rvir) which are well described by the NFW or

Einasto functional forms. Given that these functions depend on mass and one additional

parameter, concentration, the question of universality reduces to whether concentration can

be expressed as a universal function of mass. We have presented a universal (redshift and

cosmology independent) model for this relation that accurately describes simulated concen-

trations across the entire range of masses, redshifts, and cosmologies we explored, including

scale-free Ωm = 1 cosmologies, as well as the concentrations of Earth-mass halos. Our main

conclusions regarding halo concentrations are as follows:

1. The relation between concentration and peak height, ν, exhibits the smallest deviations

from redshift-independence for halo radii defined with respect to the critical density of

the universe. Definitions using the virial density contrast, or a contrast relative to the

mean density, result in much larger deviations from universality across redshift.

2. Our simulations show that both the normalization and shape of the c–ν relation depend

on the local slope of the matter power spectrum, n. In particular, we find that there is

no well-defined floor in the concentration values. Instead, the minimum concentration

value depends on redshift: at fixed ν, a higher z corresponds to steeper values of n,

and lower minimum concentrations. The c–ν relation for steep spectral slopes exhibits

a well-defined upturn at high ν, which is likely associated with an increased fraction

of unrelaxed halos.

3. We show that concentrations can be described by a function of only two parameters,

namely peak height, ν, and the slope of the linear matter power spectrum, n. In ΛCDM
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cosmologies, we define n as the local slope of the power spectrum at a scale close to

the Lagrangian radius of a halo. Based on this insight, we present a seven-parameter,

double power-law functional form approximating the c(ν, n) relation which can easily

be evaluated for any known power spectrum. This function fits concentrations in the

fiducial ΛCDM cosmology to <∼ 5% accuracy, and those in scale-free Ωm = 1 models

to <∼ 15% accuracy. The model predicts the low concentration values of Earth-mass

micro-halos at z ≈ 30, and thus correctly extrapolates over 16 orders of magnitude in

halo mass.

4. The predictions of our model significantly differ from all models previously proposed in

the literature at high masses and redshifts. For lower masses, we find that our results

are well approximated by the model of Bullock et al. (2001).

5. The predictions of our model for the average concentrations of cluster halos are in ex-

cellent agreement with the recent observational measurements from the CLASH cluster

lensing survey.

In the second part of the thesis, we turned our attention toward the outer density profiles

(r >∼ Rvir). We found a previously unknown dependence on the mass accretion rate which

implies that the profiles are not universal at fixed mass, and are not accurately described

by the conventional fitting functions such as the NFW or Einasto profiles. When comparing

profiles across redshifts we found that their universality depends on the definition of the

outer radius used. Our main conclusions regarding the outer profiles are as follows:

1. The median density profiles of halo samples exhibit a steepening at ≈ 0.5–1.5R200m

that becomes more pronounced with increasing peak height, ν, or with increasing mass

accretion rate, Γ. The median profiles reach their steepest slope at r ≈ R200m with

values of the logarithmic slope of ≈ −3 for ν <∼ 1 or Γ <∼ 1, and >∼ − 4 for ν >∼ 3.5 and

Γ >∼ 3. The steeper the slope at R200m, the larger are the deviations from the NFW
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and Einasto profiles at r >∼ 0.5Rvir.

2. We find that the slope profiles of halos of a given ν at r >∼ R200m are remarkably

universal at different redshifts, as long as radii are scaled by R200m. This universality

indicates that radii defined using a fixed overdensity with respect to the mean density

are preferred to describe the structure and evolution of the outer density profiles over

radii defined using a variable overdensity, such as Rvir, or radii defined with respect

to the critical density, such as R200c. At the same time, we find that the inner density

profiles are most universal when radii are scaled by R200c.

3. We show that the slope of the outer halo profile at r ≈ R200m depends primarily on

Γ, and becomes steeper with increasing mass accretion rate. This dependence induces

a corresponding trend with ν, because higher-ν objects accrete at a higher rate, on

average. In addition, higher-ν halos tend to be more isolated and their outer profiles

are less affected by the presence of massive neighbors, and thus exhibit less scatter.

4. We propose a new fitting formula to describe the outer profiles and present best-fit

parameters as a function of ν, Γ, and z. We show that this formula provides fits with a

fractional accuracy of <∼ 10−15% for the median and mean profiles of all halo samples

and all redshifts we studied.

Finally, we investigated the physical origin of the steepening of the density profiles. Our

main conclusions are as follows:

1. The steepening in the profiles is a manifestation of the caustic at the apocenter of the

orbits of matter on its first infall, as predicted by the spherical collapse model. We

call the caustic radius the splashback radius, Rsp, which we operationally define as

the radius where the logarithmic slope of the spherically averaged density profile is

steepest.
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2. Rsp depends primarily on the mass accretion rate of halos, with some cosmological

dependence on the mean matter density of the universe, Ωm(z). Rsp lies roughly

between R200m for rapidly accreting halos and 1.6R200m for slowly accreting halos.

3. We show that the splashback radius should, in principle, be observable through weak-

lensing analyses, in the density of galaxies around clusters, and in X-ray observations.

We present tentative evidence that Rsp might already have been detected. Due to the

correlation between concentration and mass accretion rate, observations of steep outer

profiles at r >∼ 0.5R200m should be accompanied by low concentrations of the inner

profiles at r <∼ 0.5R200m.

These results motivate further work. For example, our calibrations of the splashback

radius were limited to the averaged density profiles of halo samples. In order to explore the

universality of the mass function of Msp, we need to reliably measure Rsp in individual halos

which might be accomplished by considering the phase-space distribution of particles rather

than just the density profile (Adhikari et al. 2014). Furthermore, we will attempt a universal

description of halo mass accretion rates in order to obtain a closed circle of expressions for

the halo density profiles.
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